practical BASIC programs
Apple $\|^{\circ}$ Edit

Financial - Management Decision. Statistics. Math - Sclence. Fing ETATUS TAM

 IW FFIE WFLLE STATUS EXREMPTONS

Practical BASIC Programs

Apple ||® Edition

Disclaimer of Warranties and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs in it, including research, development, and testing to ascertain their effectiveness. The authors and the publishers make no expressed or implied warranty of any kind with regard to these programs nor the supplementary documentation in this book. In no event shall the authors or the publishers be liable for incidental or consequential damages in connection with or arising out of the furnishing, performance, or use of any of these programs.

Apple, Apple II, Apple II Plus, and Applesoft are registered trademarks of Apple Computer Incorporated. Practical BASIC Programs: Apple II® Edition is not sponsored or approved by or connected with Apple Computer Incorporated. All references to Apple, Apple II, Apple II Plus, and Applesoft in the text of this book are to the trademarks of Apple Computer Incorporated.

Published by

OSBORNE/McGraw-Hill 630 Bancroft Way Berkeley, California 94710
U. S. A.

For information on translations and book distributors outside of the U. S. A., please write OSBORNE/McGraw-Hill at the above address.

PRACTICAL BASIC PROGRAMS - APPLE II® EDITION

[^0]
Acknowledgments

Steven Cook, Martin McNiff, and Robert Thomson conceived, designed, wrote, and tested many of these programs, and prepared the final write-ups and program listings for publication in the original Osborne book, Practical BASIC Programs.

Dr. Samuel H. Westerman provided the concepts, designs, and initial program listings for 18 of these programs: Income Averaging, Continuous Interest Compounding, Depreciation Switch, Apportionment by Ratios, Profit Sharing Contributions, Statistical Estimation Theory, Statistics, Unbiased Estimator of Standard Deviation, Chi-Square, Data Forecasting Divergence, Newtonian Interpolation, Lagrangian Interpolation, Sums of Powers, Factorials, Temperature Conversion, and Musical Transposition. He also provided source material for the write-ups for the 18 programs.

Richard E. Beckwith, Ph.D., provided the concept, design, program code, and write-up for the program Swedish Machine (Queuing Theory).

George M. Blake suggested programs Accrued Interest on Bonds and Current Value of a Treasury Bill.

The programs were converted to Apple II by Cynthia Greever.

Contents

Preface ix
Introduction xi
Income Averaging 1
Current Value of a Treasury Bill 14
Accrued Interest on Bonds 16
Continuous Interest Compounding 19
Rule of 78's Interest 21
Present Value of a Tax Deduction 23
Future Value of an Investment (Uneven Cash Flow) 25
Net Present Value of an Investment 27
Lease/Buy Decision 29
Syndicated Investment Analysis 32
Depreciation Switch 38
Apportionment by Ratios 40
Internal Rate of Return 43
Financial Management Rate of Return 46
Financial Statement Ratio Analysis 50
Profit Sharing Contributions 57
Checkbook Reconciliation 61
Home Budgeting 65
Critical Path Method (CPM) 81
Program Evaluation and Review Technique (PERT) 86
Transportation Algorithm 93
Swedish Machine (Queuing Theory) 103
Markov Analysis 110
Nonlinear Break-Even Analysis 118
Payoff Matrix Analysis 122
Bayesian Decision Analysis 127
Economic Order Quantity 131
Economic Production Quantity 135
Statistical Estimation Theory 138
Statistics 142
Unbiased Estimator of Standard Deviation 149
Chi-Square 151
Data Forecasting Divergence 155
Newtonian Interpolation 158
Lagrangian Interpolation 161
Sums of Powers 165
Factorials 167
Temperature Conversion 169
Numeric Base Conversion 171
Musical Transposition 174
Appendix 177

Preface

We collected the programs in this book to address the continuing need for readily available and easy-touse computer programs that do something useful. The supply of such programs has not kept pace with the demand. The the number of computer users is growing at an astounding rate, thanks chiefly to the availability of inexpensive small computers. An increasing number of these people, many of them firsttime users, are interested only in the practical aspects of computing. Today, those who view the computer solely as a means of entertainment are few and far between. While more practical programs are now available, many contributed by new users, there just aren't enough. And those that do exist are hard to find. So we brought together in this book forty relatively short programs covering a wide range of practical applications.

Introduction

Purpose

Considering all the small computers people have bought in recent years, it should be easy to find practical computer programs. This is especially true since few users still consider their computer just a diversion. But practical programs are not readily available. The purpose of this book is to help fill that void. All forty programs in this book are useful computer applications. The Applesoft BASIC program listings are included. Type them into your computer and they are ready to run. Both the programmer and the nonprogrammer benefit from this; neither has any programming to do. All of which saves everyone time; the nonprogrammer needn't learn programming and the programmer has more time to write programs no one else has written.

While you don't have to be a programmer to use this book, you must understand the subject matter of the programs you wish to use. It is beyond the scope of this book to explain how, when, where, or why you would use any of them. This does not mean you must be a tax accountant in order to use the Income Averaging program, or a management science professional to use the Transportation Algorithm program. There are sample runs and practice problems for each program. Chances are you can figure out the program's applications from them. And if you understand the applications to some extent, but would like more information, you will find further reading suggested in the References section of many programs.

This book has a secondary purpose as well, and that is to show by example the wide range of subjects that lend themselves to computerization. All too often, computer users who have cut their teeth on entertainment computing have trouble coming up with ideas for practical computing. So even if you don't see a program in this book that is exactly what you need, you may find it easier to invent your own practical applications after studying some of these.

As you look through the programs in this book, you may discover that you can use pieces of the programs or some of the programming techniques in your own work. For example, embodied in these programs is a function for rounding arithmetic calculations to the nearest cent and a subroutine for pausing at the end of each full display screen. For that matter you may be able to use an entire program as a component part of your own larger, more complex program. Some of these programs themselves make use of programs from the book Some Common BASIC Programs, Apple II Edition, also published by OSBORNE/McGraw-Hill.

Organization

These programs find their primary applications in four general areas: financial, management decision, statistics, and mathematics and science. This arbitrary classification has no bearing on the utility of the programs per se. Clearly, the question is not what label we have applied to a program, but rather how it can be used.

Towards this end, each program includes a complete write-up in addition to its listing. Each write-up begins with a discussion of its subject matter, its required inputs, and its resultant output. In some cases, there are limitations in the algorithm the program employs, or in the applicability of the program. These are described next. Following this in many programs is a Program Notes section. It tells you how to make minor program changes that make the program operate in a slightly different way, accommodate more or less data, and so forth. These changes may make the difference between the program being convenient or difficult for you to use. The Program Notes section also explains any complex or tricky aspects of the way the program itself is written. Generally speaking, it addresses the technical aspects of implementing the application with a computer program.

Following this narrative material is an example of the program in use. Wherever possible, we set this example in a more or less real-life situation. An example which states a situation that can be resolved by
using the program is more instructive than a list of raw data which you can plug into the program. The point of doing this is not to exercise our imaginations in concocting these situations, but to exercise your imagination in visualizing potential uses of the program. The examples demonstrate as many program features as they can in a problem of reasonable size. We provide the correct answers to the unknowns of the example. The answers may be in narrative form, or they may be an inherent part of the sample run, which comes next. The sample run shows the dialogue that occurs between the user and the computer when the program is used to answer the questions posed in the example. Compare the user's inputs and the computer's outputs in the sample run with the problem stated in the example. You should be able to determine how you would use the program to solve a similar problem.

Practice problems follow each example. Use them to gain more familiarity with different ways you can use a program. Generally, we provide only the answers to these practice problems and not sample runs.

The complete BASIC program listing comes next. The listings are documented with in-line remarks. The remarks make it easier for you to figure out how the program works, if you are so inclined. The remarks (which always begin with the BASIC command REM) are not essential to program operation but they will facilitate your understanding of it.

Finally, we list references for most programs. Investigate these books, articles, etc. if you wish to read more about the subject matter of the program.

How to Use These Programs

Follow the steps listed below to use any of these programs.

1. Read the program write-up and familiarize yourself with how the program works. Read the cited references if they will give you a better understanding of the subject matter which the program addresses. Be sure the program does what you need it to do before going any further.
2. Type the program listing into your computer. Since the remark statements (those that begin with REM) are not essential to program operation, you need not type them in. By doing so, you will save time and programs will take less space, and the programs may even run marginally faster. But if you plan to modify a program extensively, you may be better off including its remarks, since they can be very helpful in tracing program logic flow during debugging.
3. Check your program listing carefully for accuracy. Compare it line-by-line and character-bycharacter with the published listing. Correct any discrepancies.
4. Save the program on tape or disk. Do it now, before you run the program. That way you can easily retrieve it in the event that anything happens while you are running it.
5. Run the example exactly as shown in the sample run. If you have done everything right to this point, the results should be very similar to those published.
6. If your answers differ markedly from ours, or your program does not run at all (i.e., you get some sort of error message), it is time for some detective work. First, double-check and triple-check your listing against the published one. We cannot overemphasize the importance of this scrutiny. Check for missing program lines and incorrect line numbers. Make sure you have entered the right letter or digit. It is often easy to confuse zeros and O's, ones and I's, two's and Z's, fives and S's, and U's and V's.

By now, your programs should be running correctly. If not, have someone else look over your program. Often another set of eyes can see things that you will miss repeatedly. Try putting the program aside for a while and coming back to it. After a short break, errors you didn't see before may be glaringly obvious.
7. As a further test of your program, run the practice problems. Compare your answers with those in the book.

Income Averaging

This program calculates U.S. federal income tax using the income averaging method (Form 1040, Schedule G). It determines whether a taxpayer qualifies for income averaging, and if so, it displays the entries to complete Schedule G. The program is based on 1980 tax forms, tax rates, and tax laws. It is devised to be used for as many years in the future as the law, rates, and forms remain the same as in 1980.

To use the program, you must enter the taxpayer's name, the taxable year, and the taxpayer's filing status that year (that is, single, married filing jointly, married filing separately, unmarried head of household, or qualifying widow(er)). You then enter the taxpayer's base period income - the four years preceding the taxable year. For 1977 and later, this is the amount from line 34 of Form 1040, or line 11 of Form 1040A (line 10 on the 1977 and 1978 Forms 1040A). You must also enter the number of exemptions for each year 1977 and later, when the program asks for them. For any years of the four-year base period before 1977, you enter the taxable income directly. We should emphasize that you should enter an income figure - even a negative figure - for each year, and you should enter the total number of exemptions claimed each year (when requested), even though the taxpayer had no net income or even though it was a negative taxable income.

Note that even though Schedule G directs that line 3 may not be less than zero, whenever the Internal Revenue Service has been confronted with the legislative history of the applicable section of the Internal Revenue Code, it has backed off, and permitted a negative figure on line 3. This program takes advantage of that fact. One the other hand, note that line 6 on Schedule G may not be less than zero, and the program takes account of that, too.

The program then asks you for other applicable income amounts (for example, excluded foreign income) and the taxable income from Schedule TC for the taxable year. It then determines whether income averaging is permissible. If so, it displays the amounts you need in order to fill out Schedule G (1980 format).

Program Notes

The program rounds all calculations to the nearest penny. Some taxpayers prefer to work only to the nearest dollar. To put whole dollar calculations into effect, change lines 39 and 40 as shown below, and when the program asks you to enter dollar amounts, enter them in whole dollars only.

```
3 9 ~ R E M ~ R O U N D ~ O F F ~ T O ~ W H O L E ~ D O L L A R S ~
40 DEF FNR (X) = INT (X + 0.5)
```

The 1980 Schedule G reproduced below shows how the elements of array A() correspond to the lines and columns of Schedule G, from A(1), the taxable year in the upper right corner, to A(44), the computed tax amount. Note that variables $\mathrm{A}(5), \mathrm{A}(9)$, and $\mathrm{A}(14)$ are in hatched boxes (the IRS intends that they remain blank in 1980). For 1980, the program accounts for that by making them all zero. As years pass, the hatching will pass off to the right, and entries will be required in those boxes.

Example

John and Mary Brown are filing a joint tax form. They have one dependent. Line 34 of their 1979 Form 1040 is $\$ 16,699.00$. Line 34 of their 1978 and 19771040 Forms shows $\$ 10,270.00$ and $\$ 12,600.00$. Their taxable income for 1976 was $\$ 11,133.00$. Their foreign income for 1979 and 1976 was $\$ 5,300.00$ and $\$ 5,000.00$. They have no penalty under section $72(\mathrm{~m})(5)$ and no community income. Their taxable income for 1980 was $\$ 37,900.00$. How would you use this program to help fill out their Schedule G for 1980?

[^1]Answer:
INCOME AVERAGING
TAXFAYER S NAME IS:
IOHN AND MAFY BFOWN
TAXABLE YEAR:
1980
ENTEF FILTNG STATUS--
-1 FOF EINGIE
-2 FOF MAFFIED/JOINT

- 3 FOR MARRTED/EEFARATE
- -4 FOR HEAD OF HOUSEHOLI
---5 FOR DUALIFYING WTDOW(ER)
72
ENTER THE INGOME FIGUFE GORRESFONGING TO LINE 34 ON FOFM 1040, OR ON FORM 1040A, GORRESFONDING TO LINE 11(1979) OR LINE 10(1977-197E)』.....
FOR THE YEAF 1979
716699
HOW MANY EXEMFTIONE ELAIMED THAT YEAF? ?
ENTEF THE INODME FTGURE GORFEEPONGING TO LINE 34 ON FORM 1040, OR ON FORM 1040A, CORFESFONDING TO LINE 11(197\%) OR LINE 10(1977-197E) ッ.a.
FOR THE YEAF $197 E$
710270
HOW MANY EXEMFTIONS ELATMED THAT YEAR? 73
ENTEF THE INCOME FIGURE GORFESFONDING TO LINE 34 ON FORM 1040, OR ON FORM 1040A, GOFRESFONDING TU LINE 1.1(197\%) OR LINE 10(1977-197E)."...
FOR THE YEAF 1977
312600
HOW MANY EXEMFTIGNE ELAIMED THAT YEAR? 73
ENTER TAXABLE INOOME FOR YEAF: 1976
711135
MOST TAXFAYERE DON'T HAVE EXDLIDED
FOREITN INGOME, FENALIZED AMOUNTE UNDEF CODE SEC $72(M)(E)$, OF EXCESS GOMMINITY TNCOME: DU YOU HAVE ANY DF THESE ITEMS? (Y/N)
?Y

```
EXGLIMED FGFEIGN INEOME-MEAF 197%
FGO0
    SAME--YEAF 197E
O
O
75000
ENTEF FENALTZED AMOUNTS, SEG: 72(M)(5)
O
ENTEF EXIESE EOMMINITY INMIME
O
ENTEF TAXAELE INOOINE FIFI YEAF IGEO
7%7900
FGF ,IWHN ANLI MAFY EFGWN, 19GO TAX,
ISINE INGOME AVEFAGINE,
GMMES TO 771E&G
THE FWLLIWWING FEFFESENTS THE FILLELI-IN
SHEMNILE I, USING THE 1OGO FOFMAT:
```



```
MOHN ANI MAFY BFOWN --1GEO
FILINE STATLS: MAFFF:MINT
ENTEF *G TO GONTINUE%O
BASE FEFTGIL INGDME ANL AL,ISTMENTS
LINE 1- 1%7%:$1669%
                                1978 : $10270
                                1977 : $12600
                                1.976:$0
LTNE ZA-
LTNE OE-
LTNE :--
LINE 4-
LTNE E- 1976: क%OO
LINE 6-
                                1976 家250
                                1977 : क2250
LTNE =
                                1%79:$5000
                                1979 % $13699
                                1975 : क5020
                                1977 " $10550
                                1%76:覀111%
                                1979: क5%00
                                197E : $0
                                1977:$0
                                1.976 : क5000
                                    1979: क : %%9%
                                1975 * $5020
                                1977 : $10%50
                                1976: $195%
```

ENTEF ジロ TO INTINIEO

```
GIMFITATIGN IIF AVEFAGEABLE INIGME
    ANI EOMFITATIDN IF TAX
LINE 7 : $%7900
LINE E : कO
LINE % : $:7900
LINE 10: $0
LINE 11 # क%7900
LINE 12: *5心702
LINE 1: : $17010.6
LINE 14: क2O88%^4
LINE 15: $1.7010.6
LINE 16:$4177.6%
LINE 17: %%11EEn4E
ENTEF *G TO EINTINIIEO:
LINE 1E: $O
LINE 1% # $%1EE*4%
LINE 2O: $3C49,77
LINE 21 : क$54%,77
LINE %% $%%07:54
LINE 2G : $1042, %
LINE 24: $416G%%
LINE 2S:$0
LINE 2\Leftrightarrow: कO
LINE こ7: $0
LINE 2E: $771E69
```



```
ENTEF "G TO IONTINIE WITH NEXT TAXFAYEF`X
```


Practice Problems

1. Hester Prynne is single, head of household, and has one dependent. Line 34 of her 1979 Form 1040 is $\$ 13,988.39$. Line 10 of her 1978 Form 1040A shows $\$ 12,650.10$. Her taxable income for 1977 was $\$ 9,212.58$; for 1976 it was $\$ 8,775.39$. In 1979, she had $\$ 1,996.50$ excluded under section 911 . Her taxable income in 1980 is $\$ 25,300.17$, and she has $\$ 1,100.00$ subject to penalty under section $72(\mathrm{~m})(5)$. How should she fill out her 1980 Schedule G?

Answer:

FOF HESTEF FFYYNNE, 19EO TAX,
USTE INGIME AVEFAGINE:
GIVESTE TIJE
THE FILLIWINE FEFFEEENTS THE FJLLEEI-IN
SOHEIUE G, ISING THE $19 O O$ FGMAT:

HESTEF FRYNNE - - 1960
FILING ETATIS: UNM. HEAD OF HOUSEHOLD

ENTEF *G TG IONTINLEO:
BASE FEFIGIN INUUME ANE ALIIISTMENTE
LINE 1- $1.979: \$ 1896,3 \%$
$1978: ~$: 1260.1

	1977	＂	束三12ı
	1976	\＃	中0
LINE 玉A－	1976	：	\＄1500
	1977	$:$	\＄1500
LTNE 2B－	197%	：	\％200
LINE \because	1979	：	\＄119玉日，\％
	1978	：	\＄11150．1
	1.977	＂	\＄7712． 5
	1．976	：	
LINE 4－	1979	：	\＄19\％6．
	1978	：	\＄0
	1977	：	\＄0
	1976	：	क0
LINE E－－	1976	：	\＄2200
LTNE 6	1979	：	\＄13964． 59
	1978	：	\＄11150．1
	1.977	：	\＄7712，
	1976	：	क10975，

ENTEF シー・Tロ IINTINIE？
UIFITTATIGN GF AVEFAGEAELE INOUME ANI GOMFUTATIIN GF TAX
LINE 7 ： 92500.17
LTNE $\because: \$ 1100$
LINE $\quad 7 \quad$ ： 24200.17
LINE $10: \$ 0$
LINE 11 ：$\ddagger=2200,17$

LINE $14: \$ 1105 \%$
LINE 15 ：$\$ 1314$＂ 6
LINE $16: \% 2210.6$
LINE 17 ： 17557,5
ENTEF $\because \because$ TG GONTINLEヲG
LINE 1G ：$\ddagger 0$
LINE $19: \$ 15975$

LINE 21 ＂ 256

LINE 2 ：$\ddagger 597.71$

LTNE＂\because 中5
LINE 27：$\ddagger 6 \%$
IINE 玉G：

ENTEF $\because \because$ TG GINTINIE WITH NEXT TAXFAYEFOX

2．Billy Budd is single and has no dependents．Line 34 of his 1979 Form 1040 is $\$ 45,130.75$ ．Line 34 of his 1978 Form 1040 is $\$ 48,968.20$ ．In 1977 and 1976，his taxable incomes were $\$ 37,500.00$ and $\$ 38,105.05$ ．He had $\$ 10,000.00$ of excludable foreign income in $1979, \$ 3,000.00$ in $1978, \$ 2,500.00$ in 1977 ，and $\$ 2,000.00$ in 1976 ．He has no excess community income and nothing subject to section
$72(\mathrm{~m})(5)$ penalty. His income for 1980 is $\$ 57,762.53$. How would he complete Schedule G, if he is eligible for income averaging?
Answer:
BTLILY EUMII
DOES NOT DUALIFY FDR AVEFAGTNG.
QVEFAGEABLE INGOME FOR 1980
IS \$1691, SE- WHICH IS \$3000 OR LESS.
ENTER 'G* TG CONTINIE WITH NEXT TAXFAYEF:X

Program Listing

6 REM A() HOLGS SCHEDULE Gi AMONTS
9 REM E() ANI F() ARE FOR TAX FATE EOHELULEE
$10 \operatorname{IIM} A(45), \mathrm{C}(4,16), \mathrm{F}(4,16)$
19 FEM FEAM TAX RATE SCHEDULES
20 GOEIE 6\%OO
3 FEM FOUNDUFF FUNETION
40 DEF FN $\mathrm{F}(X)=\mathrm{TNT}(100 * x+0$. 5) / 100
49 REM GLEAR GOHEDULE G FOF NEXT TAXFAYEF
$50 \mathrm{FOR} I=1 \mathrm{TG} 45$
$60 \mathrm{~A}(\mathrm{I})=0$
70 NEXT I
79 REM GLEAR ETFEEN
80 HOME
ES FRINT "INGOME AVEFAGTNG"
90 FRINT "TAXFAYEF"S NAME TSn"
100 INFUT Z
105 FRTNT
110 FFINT "TAXAELEE YEAF:"
120 INFUT $A(1)$
125 FFINT
130 FFINT "ENTEF FILING ETATUS--."
140 FRINT " -- - 1 FOR ETNGLE"
150 FFINT " - -2 FOF MAFRJED/MIINT"
160 FRINT " -- 3 FOR MARRIED/EEPAFATE"
170 FFINT " --. 4 FOR HEAD OF HOUSEHOLD"
180 FRTNT "--5 FOF DUALIFYING WIDOW(EF)"
190 INFUT F
200 FFINT
256 FEM
257 FEM **** BASE FERTOL TNOOME AND ALIUSTMENTS ****
25 REM
$26 E$ FEM ENTEF INCOME AMOUNTE--
269 REM FROTEDUFE IS DIFFERENT EEFORE 1977
270 FOF $-1=1$ TO 4
200 IF $A(1)$ - . >1976 THEN 220
290 FRJNT "ENTEF TAXAELE TNGOME FOR YEAF ":A(1) - .
300 INFUT $A(.1+9)$
305 FFINT
310 GロTロ 750
320 FRINT "ENTEF THE INCOME FIGUFE GORRESFOMLING"
330 FRINT "TO LINE 34 ON FOFM 1O4O, OF ON FOFM"

```
340 FRTNT " 1040A: GORFESFONDING TO LINE 11(1979)"
350 FRINT " OF LINE 10(1977-1978)."..""
O0 FFINT "FOF THE YEAF ";A(1) - , I
370 INFUT A(.1 + 1)
3 8 0 ~ F R I N T ~
470 FFINT "HOW MANY EXEMFTJONS GLAIMED THAT YEAR?"
480 INFIIT B
4 5 5 ~ F R I N T ,
4GS FEM EXEINTIONS ARE क1000 EACH 197% ANLI AFTEF,
4E% FEM $750 EAOH EEFORE THAT
490 A(, 1+5)=1000 * B
5 0 0 ~ I F ~ A ( 1 ) ~ - ~ . ~ \ ~ 1 9 7 E ~ T H E N ~ 7 4 0 ~
510 A(1) +5)=750 * B
740 A(.1 + %) = A(.1 + 1) - A(.1 + 5)
750 NEXT .-
SG6 FEM S. FFOM FILING STATUS, DETERMINE ZEFO
667 FEM BFACKET AMOUNT FOF 1975 ANII 1976
EGE FEM IF TAX YEAR IS 19E1 OF LATEF,TGNGFE
ESO FEM ZERO ERACKET AMOUNTS
870 1F A(1) ? 19GO THEN 10$6
E90 IF F = 1 OF F = 4 THEN 900
G% IF F = 2 WFF = 5 THEN 920
E%7 IF F = % THEN 940
89 REMM SINGLE HEAD OF HOUSEHOLD
900 A(15) =2200
710 GOTO %60
\sigma19 REM MAFFIE[/GOINT OF WIDOW(EF)
920 A(15) = 9200
700 GTTG %60
9% FEM MAFRTED/EEFAFATE
940 A(15) = 1600
949 REM 1975 SAME AS 1976
GS FEM IF TAX YEAF IS 19GO, IGNORE 1975
55 REM ZERG BRALKET AMOUNT
960 IF A(1) = 1980 THEN 1010
970 A(14) = A(15)
1010 FFTNT "MOET TAXFAYERE [MN*T HAVE EXILUDED"
102O FFINT " FOFEIGN INGOME, FENALIZED AMOUNTS"
10SO FFINT " IINDEF IODE SEC 72(M)(5), OR EXCESS"
1040 FFINT " COMMUNITY INCOME. DO YOU HAVE ANY"
1050 FRINT " OF THESE ITEMS? (Y/N)"
1060 INFUT W$
1070 IF Wक = "N" THEN 1200
10EO FRINT "EXLLUMEI FOFETGN INOOME--YEAR ":A(1) - 1
10%0 INFUT A(16)
1100 FFINT " SAME--YEAR ":A(1) - 2
1110 JNFITT A(17)
112O FFINT " SAME---YEAF ";A(1) - Z
1130 INFUT A(1E)
1140 FFJNT "
1150 INFUT A(19)
1.155 FFINT
1160 FFINT "ENTER FENALIZEL AMOUNTS, SEG: 72(M)(E)"
1170 INFUTT A(20)
118O FRINT "ENTEF EXCESS GOMMUNITY INEOME"
```

```
1190 INFUT A(21)
1195 FRINT
119% FEM AKL UF BASE FEFTOL INOIME COLUMNE A-I
1200 A(22)=A(10) + A(16)
1210 A(23)=A(11) + A(17)
1220 A(24)=A(12) + A(15) + A(14)
1230 A(25)=A(13)+A(10) + A(15)
LSE FEM EASE FERTOL TNGIME EANNOT BE NEGATIVE
12O9 REM IN ANY YEAF
1240 FOR I = 22 TO 25
1250 IF A(I) > O THEN 12EO
1270 A(I) = O
1280 NEXT I
12E6 REM
12E7 FEM **;* GOMFUTATION DF AVEFAGEAELE INCMME ****
12ES REM
12\sigma% FEM 7. TAXABLE INGOME FFOM SOHEDULE TC:
12%O FRINT "ENTEF TAXABLE INGOME FOR YEAF ":A(I)
1300 INFUT A(26)
1305 FFTNT
130% FEM %. SUETFAOT LINE E FFOM LINE 7
1310 A(27) = A(26) -- A(20)
1SIE FEM 1O. EXUESS EOMMNNITY INGOME IE A(21)
131% FEM 11. AM,NISTED TAXABLE INCOME
1320 A(2\Xi) = A(27) - A(21)
132% FEM LINE 11 GANNGT EE NEGATIVE
13S0 IF A(QS) % = O THEN 1360
1350 A(28) = 0
135% FEM d2. TOTAL BAEE FEFIOL INOOME
130 A(29)=A(22)+A(2%)+A(24) + A(25)
137% FEM 13. 30% OF LINE 12
1380 A(30) = FN F(A(29) * . S)
13E% FEM 14. AVEFAGEABLE INGOME
1390 A(31) = A(2S) - A(30)
1400 IF A(31) > = 3000 THEN 1450
1420 FFINT Z$
1.425 FFINT "GWES NGT DUALIFY FDR AVERAGING""
1430 FRINT "AVERAGEABLE INOONE FOR ":A(1)
14S5 FFJNT "IS $":A(S1):"- WHITH IS $SOOO OF LESS."
1440 5070 2170
1449 FEM 15. AMOUNT FFOMM LINE 1S
1450 A(32) = A(30)
1469 FEM 16. 2O% OF LINE 14
1470 A(S3)=FN R(A(31) * *2)
1479 FEM 17. TOTAL (ADM LINES 1S ANG 16)
1400 A(34) = A(32) + A(35)
14ES FEM 1S. EXDESS LOMMUNITY INGOME IS A(2J)
149% FEM 1%. TOTAL (ADI LINES 17 AND 1S)
1490 A(35) = A(34) + A(21)
149% FEM 2O. TAX ON LINE 19 AMGUNT
1500 S = A(35)
1510 GOSUB 6000
1520 A(36) = T
159 FEM 21. TAX ON LTNE 17 AMOUNT
1530 S = A(34)
```

```
1540 !ME|B 6000
1550 A(%7)=T
15G FEM ב-" TAX GN LINE 15 AMUINT
15% E = A(%2)
1570 EIGIIE 6OOO
150 A(%E)=T
159% FEM ב% SUETFAMT LTNE 2O FFOM LJNE ZI
150 A(%%)=A(37) -- A(3%)
159% FEM 24n MIILTIFLY LINE Z马 AMIINT EY 4
1600 A(40)=4 * A(S%)
16OG FEM - IF THEFEVS NO EENTIGN 7Z(N)(S) FENALTY
160% FEM -INEOME, SV゙IF TE LINE EE
1610 IF A(20) = O THEN 16%0
1<19 FEN ES, TAX MN LINE 7 AMIINNT
162O=A(2G)
16%0 MiN1IE 6000
1640 A(41)=T
164% FEM 2G. TAX GN LINE 9 AMOMNT
1650 5 = A(27)
1.60 GП5LIE 6OOO
1670 A(4%)=T
167% FEM こ7. EIIETFAGT LINE ZG FFUM LINE 2S
1600 A(4Z)=A(41)-A(42)
16% FEM ZE:TAX (AMM LINEG OO, 24; AN[I 27)
100 A(44)=A(%%)+A(40) + A(4%)
169% FEW
```



```
164 FEM
1.%% FFINT "FGF "#Z名",":A(1):" TAX,"
17OO FFINT "UETNG INIOME AVEFAGINLG""
1710 FFTNT "GOMES TO ":A(44)
17%O FFINT
17EO FFINT "THE FOLLOMTNG FEFFESENTS THE FILLEIT-IN"
1740 FFTNT "GOHEMUEEG% USTNG THE 1GOO FOFMAT:"
1750 FFINT
```



```
1.7% FFFINT
1760 FFIINT Zक%" --.-":A(1)
1770 FFTNT "FILING STATIS: "%
170 JF F= 玉 THEN 1G10
17E IF F = = THEN 1ESO
17Q4 TF F = 4 THEN 1SEO
17E6 TF FF= 5 THEN 1E70
17GE FEM GTHEFWISE F=1.
170% FFINT "%TNLILE"
1%O0 GMTO 18%O
1E10 FFINT "MAFFE/MITNT"
1E%O EOTG 15GO
1SGO FFINT "MAFF,/SEF""
1540 GOTO 1S6O
1.EO FFINT "LNM" HEAN IF HOLSEHOLIN"
1EO GITO 1EEO
1E7O FFINNT "OUAL. * WIUW(EFO)"
1ESO FFINT
IEG FEM WATT FIF OFEFATIF IUE TO ETNTINIE
```

```
1890 505118 5800
1895 FRTNT "BASE FEFIDN INCMME AND AD,USTMENTS"
189% REM FRINT LINES 1, 2, ANL S
1%00 FOF I = 2 TO 10 STEF 4
1905 IF I = 6 AND A(1) > = 19E0 THEN GMGUB 5750
1%10 IF I < > 6 OF A(1) < 19E0 THEN GOSUE 5700
1915 NEXT I
1%19 FEM FFINT LINE 4
1920 I = 16
1.80 G05|E 5700
19% FEM FFINT LINE S, IF IT'S AFFLICABLE
1940 FRINT "LTNE 5-- ";
1950 IF A(14) = 0 THEN 1970
1960 FFINT,A(1) - Э" " 吅:A(14)
1970 JF A(15) = O THEN 19%0
1980 FFINT,A(1) - 4:" : %":A(15)
19%9 FEM FRINT LINE G
1%%0 I = 2
O00 GOEUE 5700
2005 FFETNT
2009 FEM WAIT FOF OFEFATGF GUE TO OLNTINUE
2010 G#GUB 5800
%O\5 FFINT
OOO FFTNT "DOMFUTATJON OF AVEFAGEABLE INTOME"
2030 FRINT " ANL EOMFUTATION DF TAX"
2040 FRTNT "LINE 7 : w":A(26)
2050 FRTNT "LINE E : क":A(2O)
O6O FFINT "LINE % : "":A(27)
2070 FFINT "LINE 10: W":A(21)
2080 FOF ! = 11 TO 17
2090 FRETNT "LINE ":I;" : $":A(.1 + 17)
2100 NEXT .1
2109 FEM WAIT FOF OFEFATOF GUE TG OONTINE
2110 GOSUB 5800
2120 FFINT "LINE 1E : क":A(21)
2130 FOF - = 19 TO 2E
2140 FRINT "LINE ":.l:" : $":A(.l + 16)
2150 NEXT , 
```



```
216S REM WAIT BEFOFE ERAGTNG GOREEN FOR
2169 FEM NEXT TAXPAYEF
2170 FFINT "ENTEF "E" TG EONTINUE WITH NEXT TAXFAYER":
2180 INFUT W$
2190 IF W$ = "W" THEN 5O
3000 ENO
5 6 9 7 ~ F E M M
SGE FEM %%% EUBFOUTTNE TO FRINT ALL GF LINE 1,2,3,4,GF 6 ***
569% FEM
5700 FRINT "LTNE ": INT ((I -- 2) ( 4) + 1%"-- "%
S70 FWR ! = O TD 3
5720 FRINT,A(1) - . - 1:" : w":A(I + .-1)
5790 NEXT I
5 7 4 0 ~ R E T U F N N
5745 FEEM SUEROUTINE TO FFINT OUT LINE 2 A ANG E
5750 FRINT "LINE 2A- 197E : $":A(7)
```


References

U.S. Internal Revenue Service Code, Sections 1301-05.
U.S. Public Law 91-172, Section 311(b) amending Internal Revenue Code Section 1302.
U.S. Treasury Department, Internal Revenue Service. Income Averaging, publication number 506.
U.S. Treasury Department, Internal Revenue Service. Regulations, Sections 1.1301-0 to 1304-6, especially the last sentence of 1.1302-02(b) (1).

Current Value of a Treasury Bill

Treasury bills differ from other investment vehicles in that they are bought and sold at a discount from their face value. The rate will vary as the bill approaches maturity. Also, discounts are figured as if a year were 360 days; the annual percentage rate, or yield, is calculated using a 365/366-day year.

To use this program, enter the T-bill's face value, issue and maturity dates in MONTH, DAY, YEAR format, using one or two numbers for each value (be sure to separate each value with a comma). Then enter the current date and current price bid. The program provides the current value as a dollar amount.

Example

A $\$ 10,000$ T-bill was sold $1 / 10 / 80$ to mature on $4 / 10 / 80$. On $1 / 17 / 80$, government securities dealers were quoting a bid price of 12.09%. How much was the bill worth?

Answer: The bill was worth \$9,717.90
GUFFENT VALUE OF A TREASURY EILL
FADE VALUE (\%) 10000
ISSUE LIATE (MM, LID, YY)?1,10,80
MATURITY LATE (MM, LI, YY) $24,10,80$
TDDAY S LATE (MM, DI, YY)?1,17,80
CURFENT FRILE ETD (\%)?12.09
GURFENT VALUE $=\$ 9717.9$
WOULI YOU LIKE TO FE-FUN THIS FROURAM
LEING NEW LIATA (Y/N)?N

Practice Problems

1. A one-year bill issued $2 / 16 / 80$ with a face value of $\$ 50,000$ was sold $4 / 10 / 80$ at a 7.35% discount. What was the selling price?

Answer: The bill sold for $\$ 46,815.00$.
2. Diego bought a $\$ 1$ million bill on $1 / 25 / 80$ that matures $7 / 25 / 80$. On $4 / 10 / 80$ he noted that dealers were offering 15.54% on his issue. For how much could Diego sell his bill on that day?

Answer: The bill was worth $\$ 954,243.33$.

Program Listing

10	FFINT "CURFENT VALUE GF A TFEASURY EILL"
20	DEF FN A $(X)=$
30	FRINT

```
BO GISUE :40
GO FEM --- XZ = ABGOLIITE NUMEEF GF LIAYG FFIMM IMAGINAFIY LIATE
100 FEM -- 00/00/00 TO ISSUE [IATE
110 XE=A4
120 FFINT " MATUFITY IATE (MM, III,YY)":
130 INFIIT M, II,Y
140 GOGIIE S40
150 FEEM - - X4 = TOTAL NIMMEEF IF LIAYS IN FEFIIII
160 X4=AES (XZ-A4)
170 FFFINT " TMMAY*S LIATE (MM, LII,YY)":
1BO INFIIT M, II,Y
1%0 GIGUE =40
ZOO FEM - X = NUMEEF UF LIAYS FFOM ISEIIE TI TGIAY
210 XZ=AES (X3 - A4)
2% FFINT " EIIFFENT FFIILE EID (%)":
250 INFIIT E
240 FEM -- X4 = NUMEEF IIF IIAYS LEFT INTIL MATIIFITTY
250 X4= X4-X3
200 FFFINT
```



```
        * 100)))
2GO FRINT
2%O FFINT "WGULII YOU| LIKE TG FE-FIUN THIS FFGMFAM"
2% FFINT " ISING NEW LIATA (Y/N)";
#O0 INFUIT Zक
310 IF Z$ = "Y" THEN ZO
20 IF Z$ = "N" THEN 450
30 BIOTO 200
Z4O FEM - EIIEFGILITING TG IETEFMINE NLIMEEF IF LAYG EETWEEN IMAGINAFY
SO FEM -- LATE OO/OO/OO ANL MM/LL/YY LSING ZSE/SKG LIAY YEAR.
ZO FEM -- FEF: AGILINTS FAYAELE & ALIIINTS FIELEIVAELE (WANGi):
35 FEM -- FO 2SE
Z7O FIESTMFE
#O [IATA O,#,Z,G,G,11,1E,16,19,21,24,26
300 FIF II=1 TOM
400 FEALI A4
410 NEXT II
40 A4 = A4 + Y 365 + INT (Y/ 4) + 1 + (M - 1) * 2S + I
430 IF INT (Y/ 4) = Y/ 4 AND M & SHEN A4 = A4 - 1
440 FEETIIFIN
450 END
```


References

U.S. Department of Treasury. Information about Treasury Bills Sold at Original Issue, Form PD 800-D (rev. June 1978).
U.S. Federal Reserve. Marketable Securities of the United States Government - U.S. Treasury Bills, Notes, and Bonds, circular No. LLM 185.

Accrued Interest on Bonds

This program computes accrued interest to date on a bond. The program performs calculations using either a 365/366-day standard year, or a 360-day year method (used by some federal agency notes and bonds). Sometimes a bond is issued after the first period has begun. Because this results in a first coupon payment of less than the normal amount, some issues skip that payment and include it with the second period's payment. In this case, you would respond " Y ' for Yes when the program asks if this coupon involves a long first period, and enter the additional dates requested.

To use the program, select the type of year the bond calculations will use, then enter the coupon rate and the number of coupons per year. If this coupon involves a long first period, enter a " Y ' and enter the date the first period began, the date the bond was acquired, and the date the first coupon would normally have been paid had this not been a long coupon. If this coupon is normal or short, enter " N " and then enter the beginning date for this period. For both long and normal or short coupons, you now enter the date the current period ends, and the settlement date. The program will output the accrued interest in percent of par value.

Example

What is the accrued interest for settlement on $9 / 10 / 79$, for an 8.25% note due $8 / 31 / 81$ and issued $8 / 29 / 79$, with a long first coupon? The coupon dates are $2 / 28$ and $8 / 31$. The first period began on $2 / 28 / 79$. (Since 1980 is a leap year, the end of the current period is $2 / 29 / 80$.)

Answer: Accrued interest is 0.271485308% of par value.
AOORUED INTEREST ON BONDS

EIMFUTE MSING:

```
1) \(\because G O\) LIAY YEAFi
2) \(365 / 366\) DAY YEAR
3) END FROGRAM
```

WHIOH 22
COIIFON FATE (\%) 78.25
NUMEER OF GOIFONE FER YEAR 22
DUES THIS LOUFON INCLUNE A
LONG FIRET YEAR FERIOL (Y/N) OY
BEGINNING OF FIRET FEFIDI
(MM, LII, YY) $22,2 \mathrm{E}, 79$
ISSIIE DATE (MM, DI, YY) $76,29,7 \%$
FIFET COUFON IATE (MM, LI,YY) $78,31,79$
END DF EIRFRENT FERIOD
(MM, LD, YY) $2,29,80$
SETTLEMENT LAATE (MM, LIM,YY) $99,10,79$
ACOFUEI INTEREST IS . $271465 \mathrm{BOE} \% \mathrm{OF}$ FAR:
WOULD YOU LIKE TG RE-RUN PROGRAM
LEING NEW LATA (Y/N) FN

Practice Problem

What is the accrued interest for settlement on $6 / 3 / 80$, of a Federal Home Loan Bank Bond at 7.375% due $8 / 25 / 82$? The coupon payment dates are $2 / 25$ and $8 / 25$. (FHLB bonds use a 360 -day year for calculations.)

Answer: 2.00763889\% of par.

Program Listing

10 FRINT "ACORUED INTEREST ON EONIS"
20 FRINT
BO FRINT "COMFUTE ISING:"
40 PRINT " 1) 360 DAY YEAR"
50 FFINT " 2) $365 / 366$ LAY YEAR"
60 PFINT " 3) END PFIOLFAM"
70 FFINT
EO FFINT " WHICH ";
90 INFIIT T
100 IF $T=1$ THEN 130
110 IF $T=3$ THEN 820
120 IF $T<>2$ THEN 80
130 FFINT
140 FRINT "COUFION FATE (\%) ";
150 INFUTT I
160 FRINT
170 FRINT "NUMBER OF COUFONE PER YEAR ":
180 INFUTT N
$190 \times 1=0$
200 FRINT
210 FRINT "DOES THIS EOUFON INELUDE A"
215 FRINT "LONG FIRST YEAR PERIOD (Y / N) ";
220 INFUIT Z Z

240 IF Z告 < $>$ "Y" THEN 210
250 FEM -- EKIF THIS SEOTION IF FIFGT FERIOL IS NOT LONG
260 FRINT
270 FRINT "EEGINNING OF FIFET FERIOL"
275 FRINT "(MM, LI, YY) ";
260 GOSUE 650
$290 \times 2=A 4$
BOO FEM -- IGEUE DATE IS DATE GURFENT BONIHOLDEF GBTAINED THE BDND
310 PRINT "ISSLE DATE (MM, DL,YY) ";
320 BOSUE 65O
$3 G 0$ REM -- XI = NUMEEF OF LAYS FROM ISEUE TO END OF FARTIAL FERIOL
$340 \times 1=A B S(X 2-A 4)$
350 FRINT "FIFST COUFON LATE (MM, IL,YY) ";
360 GOEUB 650
370 FEM -- X2 = TOTAL NUMBEF OF LAYS IN FIRST FERIOII
$350 \times 2=A B E(X 2-A 4)$
$390 \times 1=\left(X_{2}-X_{1}\right) / X_{2}$
400 GOTO 460
410 FFiINT
420 FRINT "EEGINNING OF GURRENT FERIOL "
425 FRINT " (MM, LI, YY) ";

```
430 GOSUE 650
440 FEM -- XS = ABSOLUTE NUMEEF OF LAYS FFOM IMAGINARY IATE
450 FEM -- 00/00/00 TO EEGINNING OF CURRENT FERIOL
460 XS = A4
470 FRINT "ENL OF IURRENT FERIOL"
475 FRINT "(MM, ID,YY) ";
480 GOSl|B 650
490 REM -- X4 = TOTAL NUMEEF OF DAYS IN GURFENT FERIOI
500 X4 = ABS (X3 - A4)
S10 FFINT "SETTLEMENT DATE (MM, DI,YY) ";
5 2 0 ~ B O S U B ~ 6 5 0 ~
5GO REM -- XS = NUMBER OF LAYS FFOM EEGINNING OF
5 4 0 ~ R E M ~ - - ~ C U R F E N T ~ F E R I O D ~ T O ~ S E T T L E M E N T ~ I A T E ~
550 XS = ABS (X3 - A4)
560 X3 = (X3 / X4) + X1
570 FRINT
SEO FRINT "ACORUEI INTEREST IS ";(I / N) * XS;"% OF FAR."
5 9 0 ~ F R I N T
600 FRINT "WOULII YOU LIKE TG RE-FUN FROGRAM"
605 FRINT "\amalgSING NEW DATA (Y/N) ";
610 INFUT Z$
620 IF Z$ = "Y" THEN 20
600 IF Z$ = "N" THEN 820
640 GOTO 600
650 INFIIT M, LI,Y
660 IF T = 1 THEN SOO
670 FEM -- SUBROUTINE TO DETERMINE NUMEER OF DAYS EETWEEN
675 REM -- IMAGINARY DATE OO/O0/O0 AND MM/DL/YY USING 365/366
GEO REM -- LAY YEAF: FEF. ACOOLINTS FAYABLE & ACTOUNTS
690 REM -- RECEIVABLE (WANGi), F.255
700 RESTORE
710 [ATA 0,3,3,6,3,11,13,16,19,21,24,26
720 FOR I1 = 1 TO M
730 REALI A4
740 NEXT I 1
750 A4 = A4 + Y * 365 + INT (Y/4) + 1 + (M - 1) * 2G + 口
760 IF INT (Y / 4) < > Y/ / OR M > 2 THEN 770
7E4 A4 = A4 - 1
770 RETURN
7EO FEM -- SUBROUTINE TO COMPUTE NLMEER OF LAYS FROM
790 FEM -- IMAGINAFY DATE OO/O0/00 TO MM/DL/YY USING SGO YEAR.
800 A4 = (Y * 360) + (M * 30) + II
810 RETURN
E20 END
```


Reference

Stigum, Marcia. The Money Market: Myth, Reality, and Practice. Homewood, Ill.: Dow Jones-Irwin, 1978. Pages 538-47.

Continuous Interest Compounding

This program calculates the future value of an investment for which interest is compounded continuously. You must enter the interest rate, the number of years that interest will accrue, and the amount of the initial deposit. The total value is based on the following formula:

$$
\mathrm{T}=\mathrm{D} e^{\mathrm{IN}}
$$

```
where:
\(\mathrm{T}=\) total value after N years
\(\mathrm{D}=\) initial investment
\(\mathrm{I}=\) interest rate
e 2.718281828... (base of natural logarithms)
```


Example

Dan deposits $\$ 800.00$ at $71 / 2 \%$ interest, compounded continuously. How much will his account be worth in ten years?

Answer: \$1,693.60
GONTINUOUS INTEFEET COMFOUNOING
ENTEF THE ANNDAL INTEFEET FATE
TG EE FAID ON THE ACLOUNT
77.5

ENTEF THE NUMBEF OF YEARE OF FFACTIONS
OF YEARE THAT INTEFEST WILL ACORIE
310
ENTEF YOUF INITIAL DEFOSIT
7800
WITH GONTINUDUS EOMFOUNDING A DEFDEIT OF
कEOO GROWS IN 10 YEAFS AT 7.5% TO
\$169\%. 6

Practice Problems

1. If George invests $\$ 5,000.00$ at 9%, compounded continuously, how much will he have in seven years and three months? (Enter 7 years 3 months as 7.25 years.)

Answer: \$9,601.68
2. Dr. Williams invests $\$ 70.00$ for his niece on the day she is born. How much will she get when she turns 21, at $61 / 4 \%$ compounded continuously?

Answer: \$260.08

Program Listing

10	FFINT	"CONT INUME	INTEFEST COMFOUNETNG"
20	FRINT	"ENTER THE	ANNUAL INTEFEST FATE"
30	FFINT	"TG BE FAIL	EN THE ACOOUNT"
40	INFUIT	I	

50 IF I $=0$ THEN 20
60 FRINT "ENTER THE NUMBER OF YEARS OF FRACTIONS"
70 FRINT "OF YEARS THAT INTEREST WILL ACORUE"
80 INFUT N
90 IF N $=0$ THEN 60
100 FRINT "ENTEF YOUIF: INITIAL DEFOSIT"
110 INFIIT I
120 IF I <0 THEN 100
130 FFINT "WITH GONTINUDUS UOMFOUNDING A DEFOSIT DF"
140 FFINT "末"; I;" GROWS IN ":N:" YEARS AT ":I:"\% TG "
150 FRINT "क": INT (100 * (D * EXF (I / 100 * N)) + .5) / 100 160 ENLI

Rule of 78's Interest

This program computes the interest for each month of a loan in accordance with the rule of 78's. You enter the total interest which would have been earned had the loan continued to maturity, and the number of months in the original period of the loan. The program then prints out a table, with the number of each month, the interest earned during that month by the rule, the interest earned so far, and the balance of (unearned) interest remaining at the end of that month.

Example

A 24-month loan calls for total interest of $\$ 10,000.00$. What is the interest for each month of the loan? Answer:

RULE IF 7E'S INTEFEST
ENTER TOTAL INTEREST TO EE EARNED
TO MATURITY OF THE LIAN
710000
ENTER NO: OF MONTHE DURATION
OF THE LGAN TG MATURITY
24
MONTH MONTH S ALOUM: BAL: OF
IF LGAN INTEFEST INT. INTEREST
1.
$2 \quad 766.67 \quad 1566.67 \quad 3433.35$
3
4
$5 \quad 666.67 \quad 3666.67 \quad 639.35$
$6 \quad 63,35 \quad 4300 \quad 5700$
$7 \quad 600 \quad 4900 \quad 5100$
$8 \quad 566.67 \quad 5464.67 \quad 4539.39$
$9 \quad 53,33 \quad 6000 \quad 4000$

$500 \quad 6500 \quad 500$
$11 \quad 466.67 \quad 6966.67 \quad 3053.33$
$12 \quad 433_{n} 33 \quad 7400 \quad 2600$
$13 \quad 400 \quad 7800 \quad 2200$
14 366.47 8166.67 1853.35
$15 \quad 39.33 \quad 8500 \quad 1500$
$16 \quad 300 \quad 1200$
$17 \quad 266.67 \quad 9066.67 \quad 93,3 \mathrm{O}$
$16 \quad 230.36 \quad 9300 \quad 700$
$19 \quad 200 \quad 500$
$20 \quad 166.67 \quad 966.47 \quad 33.33$
$21 \quad 13503 \quad 200$
$2 \begin{array}{llll}20 & 100 & 900 & 100\end{array}$
$23 \quad 66.67 \quad 996.67 \quad 33.33$
$24 \quad 3.35 \quad 10000 \quad 0$
FENNY BREAKAGE AD.UISTED IN LAST MONTH

Practice Problems

1. Laurie took out a 36 -month loan. Her total interest was $\$ 3,614.59$. What was the balance of unearned interest if she terminated the loan after two years?

Answer: \$423.33
2. Bob Johnson pays off a three-year loan two years early. If the total interest would have been $\$ 180.00$, how much interest did he actually pay?

Answer: \$98.94

Program Listing

5 FRTNT "FULE OF 7E'S INTEFEET"
9 REM FOUNDOFF FUNCTIDN
10 DEF FN $F(X)=$ INT ($100 * X+, 5) / 100$
20 FRINT "ENTEF TOTAL INTEFEST TO EE EAFNED"
OO FRINT "TG MATURITY OF THE LOAN"
40 INFUTT I
60 FRINT "ENTEF NO. DF MONTHE DUFATION"
70 FRINT "OF THE LGAN TO MATUFITY"
80 INFUTT T
$100 \mathrm{TL}=\mathrm{T} *(T+1) / 2$
110 FFINT "MONTH MONTH"S ACLIM, BAL. OF"
120 FFINT "OF LGAN INTEFEST INT. INTEFEST"
$130 \mathrm{~A}=0$
139 FEM FRINT TABLE
140 FOF M = 1 TOT -1
$170.1=F N R((T-M+1) * I / T 1)$
$160 A=A+1$
$190 \mathrm{~B}=\mathrm{I}-\mathrm{A}$
240 FRINT M: TAB (9):I: TAB(1E):A: TAB(27); FN F(E)
250 NEXT M
255 FFINT T: TAB(7): FN F(B): TAB(1E):A + B: TAB(27):0
260 FRINT "FENNY EREAKAGE ADIUSTED IN LAET MONTH"
270 ENG

Present Value of a Tax Deduction

When evaluating an investment, the value of the tax savings is often a consideration. This program calculates the amount of any savings you might realize by deducting interest payments.
You must enter the tax rate, the interest rate on the debt, the term of the debt (in years), and the amount of interest to be paid during each year of the term.

Program Notes

If the level of debt will be constant throughout the term of the investment, you may want to change the program to calculate interest amounts as a percentage of a fixed dollar debt amount. Make these changes.

```
90 FRINT "NUMEEF OF FERIODS":
100 INFUTT N
102 FFINT "ENTER AMOUNT DF LEET (&)":
104 JNFIIT Z
110 F=0
120 FOR . I = 1 TO N
180 FFINT Z * K
190 F = F + (Z * K * T) / ((1 + K) * , \
200 NEXT .l
```


Example

What is the present value of the tax savings on projected interest payments of $\$ 4,000, \$ 3,500, \$ 4,500$, $\$ 4,000$, and $\$ 5,000$ over the next five years if the tax rate is 48% and the interest rate on that debt will be 19% ?

Answer: If the five interest payments are deducted from taxable income, the present value of the taxes saved is $\$ 6,044.74$.
fresent value of an interest tax DELIITTION

WHAT IS THE TAX FATE (\%) \%4S
ENTER INTEREST FATE (\%) 219
NUMEEF OF FERIODS ?S
INTEREST AMOUNT FOR FERIOD (主) 174000
275500
374500
474000
575000

PRESENT VALUE OF DEDICTION $=\$ 6044.74$
WOULL YOU LIKE TG RE-RUN THIS FROGRAM WITH NEW DATA (Y/N) TN

Practice Problems

1. If Nick buys a new truck for the shipping business he plans to start, the principal will be $\$ 6,250.00$ and the interest rate 16%. Nick will make interest payments of $\$ 1,000.00, \$ 900.00$, and $\$ 800.00$ during the three-year term of the loan. If his new company will be in a 33% tax bracket, what is the present value of the taxes he will not have to pay when he deducts the interest payments?

Answer: The present value of the tax savings realized by deducting the interest payments is $\$ 674.34$.
2. If the tax rate is 30% and the interest rate is 15%, what is the present value of taxes saved by deducting interest payments of $\$ 45.00, \$ 40.00, \$ 35.00$, and $\$ 30.00$ during the next four years?

Answer: The present value of the tax savings here is $\$ 32.86$.

Program Listing

```
FRINT "FRESENT VALUE OF AN INTEFEET TAX
15 FRINT "DEDUITION"
20 FFIINT
30 FRINT "WHAT IS THE TAX FIATE (%) ";
40 INFIIT T
50 T = T / 100
60 FRINT "ENTER INTEREST RATE (%) ";
70 INFUT K
80 K=K / 100
90 FRINT "NUMEER OF FEFIOLS ":
100 INFUIT N
110 F = 0
120 FOR I = 1 TO N
130 IF & > 1 THEN 160
140 FFINT "INTEREST AMOUNT FOR FEFIOD ($) ";
150 GIOTG 170
160 FFiINT " ":
170 FRINT !:" ";
1EO INFUTT Z
190 F=F + (Z*T) / ((1 + K) * (1)
200 NEXT .l
210 FFiINT
220 FRINT "FREEENT VALUE OF DEDUICTION = क";
25 FFINT INT (F * 100 + .5) / 100
2SO FRINT
240 FFINT "WOULD YOU LIKE TO RE-RUN THIS FROGGAM"
245 FRINT "WITH NEW DATA (Y/N) ";
250 INPIIT Z*
260 IF Z早 = "Y" THEN 20
270 IF Z$ < > "N" THEN 240
260 END
```


Reference

Future Value of an Investment (Uneven Cash Flow)

Often it is useful to project the future (or terminal) value of monies to be received from an investment. The accept/reject criterion stipulates you should reject any investment whose future value of all cash flows, including the initial investment, is less than zero. This program computes that value, based on the term (in years), the growth rate, and the cash flow amounts for each year. The growth rate should be the rate at which you have alternative opportunities to invest.

Example

Aunt Lonna wants to start a college fund for her nephew, Brian. She plans to put $\$ 200.00$ into savings this year, $\$ 350.00$ next year, and $\$ 250.00$ the following year. The interest rate is 6%. What will Brian's fund be worth at the end of the third year?

Answer: Brian's fund will be worth $\$ 845.72$.
FIITIRE VALUE IF AN INVESTMENT
NIMEER OF CASH FLDWS 3
GROWTH FATE (\%) ?
(ENTER INFLOWS AS FOSITIVE,
OUTFLOWE AS NEGATIVE)
AMIUNT DF EASH FLOW 12200
27050
37250
FIITIURE VALUE AT ENI OF FERIOD $3=\$ 845.72$
LIG YOU WANT TO RE-FUN THIS FFIUGRAM
WITH NEW LATAC (Y/N)TN

Practice Problems

1. What will the value of $\$ 25,000$ be in eight years if another $\$ 25,000$ is invested in year three and $\$ 10,000$ is withdrawn during the fifth year? The growth rate is 15%.

Answer: \$101,575.68
2. If the growth rate above was 18%, what would the future value be?

Answer: \$120,400.47

Program Listing

10 FRINT "FUTURE VALUE OF AN INVESTMENT"
20 DEF FN $A(X)=\operatorname{INT}(X * 100+.5) / 100$
SO FRINT
40 FRINT " NUMBEF OF CASH FLOWS ":

```
5O INPIIT N
60 FFINT " EFFOWTH FiATE (%) "%
70 INFUIT F
80 Fi = Fi / 100
90 FFFINT
100 T = 0
110 FFINNT "(ENTEF INFLDWS AS FIGITIVE,"
115 FFINT ". IITFLOWS AS NEGATIVE)"
120 FGF of = 1 TG N
130 IF O % 1 THEN 1%0
140 FFIINT "AMOLINT GF E:ASH FLOW ":
150 EIOTIT 170
160 FFiINT " "%
170 FRINT .I;" ";
180 INFUIT E
IO FEM ALILI FIITIIFE VALIES IF EALH YEAFI EASED IN FATE IF Fi
200 T = T + FNA(E* (1 + Fi) \therefore (N - !l))
210 NEXT .l
2% FRINT
ZO FFINT "FIITIIFE VALIIE AT ENLI IF FEFIGII ";N:" = क";T
240 FEM FIESTAFT IF END FFDUFAM?
250 FGFINT
26O FFIINT "LII YGII WANT TO FE-FIUN THIS FFOUIFIAM"
265 FFINT "WITH NEW [IATAT (Y/N)";
270 INFIIT Z$
2BO IF Z京= "Y" THEN SO
200 IF Z$ < > "N" THEN 26O
300 END
```


Reference

Solomon and Pringle. An Introduction to Financial Management. Santa Monica, Calif.: Goodyear Publishing, 1977.

Net Present Value of an Investment

Net Present Value (NPV) is defined as the present value of all cash flows associated with an investment, including the initial outlay. The NPV accept/reject criterion for an investment is to accept any investment whose NPV is greater than zero.

To use this program, you first enter the amount of the initial outlay, the term of the investment (in years), the required rate of return, and the cash flow amounts for each year.

Program Notes

To obtain the present value of an investment, enter an initial investment of zero.

Example

Jack has an investment opportunity that requires an initial investment of $\$ 10,000$ and offers cash returns of $\$ 3,000, \$ 5,000$, and $\$ 4,000$ over the next three years. Jack wants at least 15% return on his money. What is the NPV of this investment? Should Jack accept?

Answer: The NPV of this investment is $-\$ 980.52$. Jack should not accept.
NET FRESENT VALUE
INVESTMENT 10000
NUMEEE OF YEARS OS
FEDUIFED FATE OF RETIIRN (\%) 215
ENTEF EAEH FLOW AMOUNTS EACH YEAR
(ENTER DUTFLOWS AS NEGATIVE).
INFLOW FOF YEAF 1.9000
275000
374000
NET FRESENT VALUE $=\$-980.52$
חU YOU WANT TO FE-FUN THIE FFOGRAM
WITH NEW [ATA; (Y/N):N

Practice Problems

1. Doris holds a note for $\$ 1,000.00$ which matures in two years, but she wants to invest that money now in new sound equipment. Her bank will buy the note at a 10% discount. What price is the bank offering? (Hint: This is a present value calculation.)

Answer: The bank will pay Doris $\$ 826.45$ for the note.
2. What is the NPV of a $\$ 1,500$ investment which offers returns of $\$ 800.00$ year $1, \$ 900.00$ year 2, requires $\$ 1,000$ more to be invested year 3 , returns $\$ 900.00$ year 4 , and $\$ 800.00$ year 5 ? Comparable five-year investments currently offer a 15% return.

Answer: The NPV of this investment is $\$ 130.98$, quite acceptable.

Program Listing

```
10 FRINT "NET FRESENT VALUE"
20 LEF FN A (X) = INT (X* 100 + E S / 100
OO REM ADI IIM E(N) STATEMENT AT LINE 40
S5 REM IF MAXIMUM NUMEER OF EASH FLOWS IF > 10
40 REM
5 0 ~ F R I N T
@O FFINT "INVEETMENT ";
70 INFUT CO
BO EO= - FN A(CO)
90 FFINT "NIMEER OF YEARS ";
100 INFUT N
110 FRINT "FEQUIFED RATE OF FETIIFN (%) ";
120 INFUIT R
130 Fi=Fi/100 + 1
140 F=0
150 FFiINT
160 FFINT "ENTEF EASH FLOW AMOUNTS EACH YEAR"
165 FRINT "(ENTER OUTFLDWS AS NEGATIVE)."
170 FRIINT
180 FOR = = 1 TO N
190 IF , > 1 THEN 220
2O0 FRINT "INFLOW FOR YEAR ";
210 GIGTG 250
220 FFINT " ";
2SO FRINT :I;" ";
240 INFUT E(.1)
26O NEXT I
270 T = C0
2OO FEM ADIL FRESENT VALUES FGR EALH YEAR BASEI ON FATE OF F
200 FOR .I = 1 TO N
300 T = T + FN A(C(,1) / (R ` , 1))
310 NEXT .1
30 FRINT
30% FRINT "NET FRESENT VALUE = & "; FN A(T)
340 REM FESTART OF END FROGRAM?
35 FRIINT
360 FRINT "DIG YOU WANT TG RE-RUN THIS FROIGRAM"
365 FRINT "WITH NEW LATA; (Y/N)":
370 INFUIT Z$
380 IF Z$ = "Y" THEN 50
8%0 IF Z$< > "N" THEN 360
400 END
```


References

Rosen, Lawrence R. Dow Jones-Irwin Guide to Interest. Homewood, Ill.: Dow Jones-Irwin, Inc., 1974.
Solomon and Pringle. An Introduction to Financial Management. Santa Monica, Calif.: Goodyear Publishing, 1977. Pages 261-62.

Lease/Buy Decision

This program computes the present value of the cost to lease, and the present value of the cost to buy. Any difference between those amounts is the advantage of leasing or of buying. It is assumed that the asset would be financed over the same period of time that it would be leased.

To use the program, enter the price of the asset, the interest rate, the term in years, the salvage value at the end of that term, the tax rate, annual amount of loan payments, and the annual amount of lease payments. The program outputs the present value of the cost to buy, the present value of the cost to lease, and the difference between those amounts.

While this program may be instructive in pointing out decision factors you may have overlooked, it is not meant to replace your judgment. Capital planning requirements and lease/loan terms must ultimately guide your decision. In general, depreciation and salvage value reduce the cost of buying. However, if an asset is subject to rapid obsolescence, leasing may be the less expensive choice.

Program Notes

This program is actually a modified version of the Net Present Value of an Investment program. As such, you may find it instructive of modifications you may make to any of the programs in this book.

Example

Acme Landscaping has need for a small truck for everyday use. They are considering buying a truck for $\$ 6,000$. Salvage value after four years is estimated to be $\$ 2,000$. The bank will lend $\$ 6,000$ at 16% interest to be repaid in four equal installments of $\$ 2,145$. The lease will cost $\$ 2,000$ per year. Taxes are 40%, and straight-line depreciation of $\$ 1,000$ per year will be used. What is the present value of the cost to buy? What is the present value of the cost to lease? Should Acme lease or buy?

Answer: The present value of the loan is $\$ 3,011.90$. The present value of the lease is $\$ 3,357.82$. Acme should buy the truck.

LEASE/EUY DECISION
ENTER THE COST TO ADQUIFE ASSET
(FRINGIFAL OF LOAN) 6000
ENTER THE INTEREST FATE (\%) $\geqslant 16$
ENTEF THE TEFM IN YEARS ? 4
What is the salvage valime AT THE END OF 4 YEARS 22000

WHAT IS THE TAX RATE (\%) 740
ENTEF THE ANNIIAL AMOUNT
OF LOAN FAYMENTS 22145
ENTEF: THE ANNUAL AMOUNT
OF LEASE FAYMENTS 2000
ENTEF THE LEFREEIATION AMOUNT
FOR EACH YEAR
YEAR NUMEER $1 \geqslant 1000$
$2 ? 1000$

```
71000
4%1000
FFESENT VALIIE OF LOST OF LOAN =$3011.9
PRESENT VALUE OF GOST DF LEASE =$3357.32
ADVANTAGE OF EUYING =$345.92
WOULI YOU LIKE TO RE-FUNN THIS FROGRAM
WITH NEW LATA (Y/N)O'N
```


Practice Problems

1. In the above example, what if the lease is $\$ 1,200$ per year?

Answer: Leasing would be the best choice. The present value of the lease would be $\$ 2,014.69$. The leasing advantage would be $\$ 997.21$.
2. Industrial Supply Company needs a computer for their in-house use. The model they want will cost $\$ 30,000$, to be financed at 17% interest over five years. After five years ISC plans to sell the computer for $\$ 10,000$ and buy a larger model. The tax rate is 48%, annual loan payments will be $\$ 9,375.00$, and a fiveyear lease on the equipment would cost $\$ 3,500.00$ per year. Depreciation would be $\$ 6,000.00$ the first year, $\$ 5,000$ year $2, \$ 4,000$ year $3, \$ 3,000$ year 4 , and $\$ 2,000$ year 5 . What is the advantage of leasing or buying?

Answer: ISC would realize an advantage of $\$ 7,362.24$ if they leased the new computer.

Program Listing

10	FFINT "LEASE/BUY DEEISION"
20	REM - FUNGTION TO ROUND TO NEAREST HUNDREDITH
30	[EFF FN $A(X)=$ INT $(X * 100+0.5) / 100$
40	FRINT
50	FFINT "ENTER THE COST TO ACOUIFE ASSET"
55	FRINT "(FRINEIFAL OF LOAN) ";
60	INFUT E1
70	FFINT "ENTEF THE INTEFEST FATE (\%) ";
80	INFUT I 1
90	FEM - CONVEFT INTEFEST RATE TO DEGIMAL
100	I1 = II / 100
110	FFINT "ENTEF THE TEFM IN YEARS ";
120	INFUT YI
130	FRINT "What is the salvage value"
135	FRINT "AT THE ENL DF ":Y1;" YEARS ":
140	INPUT SI
150	FRINT
160	FFiINT "WHAT IS THE TAX FATE (\%) ";
170	INFIIT Fil
180	FEM - COMVEFT TAX FAATE TG decimal
190	$\mathrm{Fl}=\mathrm{Fi} / 100$
200	FFint "ENTEF THE ANNUAL AMOUNT"
205	FRiINT "OF LOAN FAYMENTS ";
210	INFUT A1
220	FRINT "ENTEF THE ANMIAL AMOUNT"
225	FRINT "OF LEASE FAYMENTS ";
230	INFUT AE

```
240 FEM - FESET TITAL AMIUNTS TII ZEFIO
250 T1 =0
260 L1 =0
270 FFFINT
2EO FFINT "ENTEF THE LEFREEIATIIN AMIIINT"
2G5 FFIINT "FDF EALH YEAF"
20 FFIINT
OOO FEM - LEIOF TIINFIIT, EALELILATE, ANII ACIUMIULATE
305 FEM - VALIIES EALH YEAR
Z10 FIFR Z=1 TO Y1
30 IF Z ? 1 THEN 350
ZOO FFIINT "YEAF' NIIMEEF" ":
$40 GITTO $60
S50 FFFINT " ";
360 FRINT Z;" ";
370 INFUT II
EOG FEM - EALELILATE INTEFEST AMINNT FGF EACH YEAF
300BO}=ABS(E1-FNA(E1*(1+I1))
4OO FEM - EONVEFT LI TO FFESENT VALIIE OF EOST
4OS REM - OF GWNING EAEH YEAF
410 II = FN A((A1 - FN A((D1 + EO) * Fil)) / ((1 + II) \therefore Z))
420 REM - SIIBTFALT ANNIIAL FAYMENT,
42S FEM - ALIL ANNLIAL INTEFEST TI FFIINEIFAL
480 E1 = B1 - A1 + BO
440 FEN - SIMM FFESENT VALIIE AMDILNTS IF EALH YEAF:
450 T1 = T1 + [11
460 FEM - GOMFIITE FFESENT VALUE GF IGST TG LEASE FOF EALH YEAF
470L1=L1 + FN A((A2 - (AZ * F1)) / (1 + I1) = Z)
480 NEXT Z
4%0 FEM - EIIETFAC:T FFESENT VALUE GF EALVAIGE VALIIE
4%5 FEM - FFIMM TITAL EIST TOI IWN
500 T1=T1 - FN A(S1//(1 + I1) \therefore Y1)
510 REM - EIITFUT FESILLTS
50 FFINNT
SOO FFINT "FFESENT VALUE IF EOST IF LIAN =क"; FN A(T1)
540 FRINT "FRESENT VALIUE IF IOST IF LEASE =$"; FN A(L1)
E5O FFINT
50 IF LI < T1 THEN 5%O
570 FFINT "ALIVANTAGE GF EIIYING =क"; FN A(L1 - T1)
SO EOTO 6OO
590 FFIINT "ALUANTALE IF LEAEING =$"; FN A(T1 - L1)
6OO FFFINT
G10 FEEM - FEESTAFTT IFR ENII FFOILFFAMT
GOO FFINT "WI|ILII YO|I LIKEE TG FE-RUNN THIS FFIDGFAM"
6こ5 FFIINT "WITH NEW [ATA (Y/N)";
630 INFUIT Z$
640 IF Z$= "Y" THEN 40
650 IF Z中 < % "N" THEN 620
6O END
```


Reference

Chase and Aquilano. Production and Operations Management. Homewood, Ill.: Richard D. Irwin, Inc., 1977. Pages 138-40.

Syndicated Investment Analysis

This program evaluates tax savings and net cash flows from an investment by a syndicate, or group of investors, to a participating investor. The program considers the investor's tax bracket, as well as the proportion of the original investment, participation in cash income, taxable income/loss, and tax credits.

To use this program, enter the length of the analysis in years and the first year of syndication. Then, for each year, enter the cash income for the syndicate, followed by its taxable income. Enter the year $(1,2$, and so forth) and total investment for that year by the syndicate. Then, enter the year and amount of investment or other tax credits (entered as a negative number), or credit recapture (entered as a positive number). Next, enter allocation percentages for the investor: percentage of total investment, cash, income, and taxable income (or loss) and credits. The final entry is the investor's tax bracket, entered as a percentage.

The program then prints its analysis, which shows the investor his/her original investment, cash income, taxable income, tax saving (tax savings are negative; tax paid is positive), net end-of-year cash flow and cumulative net cash flows. You may repeat the analysis for different tax brackets when the program asks for a new tax bracket to consider. (All other investment factors remain as you last entered them.) Enter a tax bracket of 999 to respecify the percentage allocations. Enter an investment allocation percentage of 999 to end the program.

Program Notes

The program is set for 40 years of projections. You can change this amount by modifying line 20 as follows:

$$
20 \mathrm{~N} 9=\mathrm{I}
$$

Make sure that you replace the expression I with a constant equal to the maximum number of years.

Example

Consider this syndicated investment: An income property with a $\$ 35,000$ down payment which will generate $\$ 4,500$ cash over the first four years, $\$ 5,200$ over the next four years, and $\$ 5,500$ over the remaining five years. The investment earns a $\$ 3,500$ investment tax credit in the first year. Taxable income will start at $-\$ 3,800$ and increase by $\$ 1,100$ per year for the life of the investment.

The investor is in the 55% tax bracket, and is contributing 30% of the original cash outlay. Participation is 30% on cash income and taxable income. How will this investor run the program?

Answer: The printout below shows the investor's portion of cash income, tax savings, net and cumulative cash flow. At the end of the investment projection, cumulative cash to this investor is $\$ 4,432$, and the investment is sheltered until the end of 1985 , when a tax on $\$ 109$ must be paid.

SYNUTGATED INVESTMENT ANALYEIS

FOF HOW MANY YEAFS IOI YOII WANT
THIS FFOUEOTIDN (LTMIT: 40) $\because \because$

ENTEF THE FIFST YEAF IF
GYNDIGATION (E, Gi, 1GG) $\because 9 G 0$

```
FOR ENTIRE SYNGIGATE, ENTEF GAGH INGOME
FOF EALH YEAR GF FROUEOTIOM
YEAF 1 CASH INCOMME = %4500
YEAF 2 CASH TNLOME = %4500
YEAR 3 CAGH INCOME = %4500
YEAF 4 EASH INEOME = ?4500
YEAF 5 EASH INGOME = %5200
YEAF: GASH INLOMME = %500
YEAF }7\mathrm{ EASH INOUME = %S2OO
YEAF E EASH INOONE = %500
YEAF % EASH INOONE = %S5OO
YEAF 10 EASH INCOME = =5500
YEAR 11 EASH INCOME = O5500
YEAF 12 EASH INGOME = %5500
YEAR 13 EASH INGOME = %SSOO
FOF ENTIFE EYNOILATE, ENTEF TAXAELE
INOWME FOR EADH YEAR OF FROUELTION
FOSITTVE FOF INGOME NEGATIVE FOF LOSS
YEAF }1\mathrm{ TAXABLEE =--3E00
YEAR 2 TAXABLE =%-2700
YEAR = TAXABLEE = --1600
YEAF 4 TAXABLE = =-500
YEAF 5 TAXABLE =%600
YEAR G TAXABLE = %1700
YEAF }7\mathrm{ TAXABLEE = 2GOO
YEAR: O TAXABLE = %900
YEAR G TAXABLE = %5000
YEAR 10 TAXAELE = % % 100
YEAR 11 TAXAELE =77200
YEAR 12 TAXABLE = = %300
YEAR 13 TAXABLE =%9400
ENTEF YEAF OF VENTLIEE (1, 2, ETG:) ANL
AMOUNT GF INVESTMENT EY ENTIFE GROUP
#F INVESTORS THAT YEAR, AFTEF LAST
YEAF, ENTEF F9%9%,0
71,35000
0%%%%,0
ENTEF YEAF OF VENTURE (1, 2, ETG.) AND
ANOUNT OF INVESTMENT GREDIT OF GTHEF
EIMILAR GFELIT FOR ENTIFE SYNDILATE
(AG NEGATIVE), ANG CREDIT REGAFTURE
(AS FOGITUVE ) FTGURE: AFTEF LAST
ENTFY, ENTEF %%9%,0
#1,-8500
%%%%%,0
ENTER FEFIENTAGE ALLOEATIONS (0-100%)
FOR THIS INVESTOR:":
FGT: OF INVESTMENT ( }9%=ENDI) %3
    FLT, OF EASH INCOME OBO
    FGT" OF TAXABLE INCOME
    (OR LOSS), ANG GREIITS 7SO
```

```
ENTEF TAX BFALKET
(999=CHANGE ALLOLATIONE) 5SE
FESULTS FOF INVESTOF IN 5S
% TAX BFAC&ET
```

YEAF INUEST- EASH TAX NET GUMDLATIVE
MENT INOME EAVING GASH GASH

1980	10500	1550	-1677	-7473	-7473
1981	0	1350	-446	1796	-5677
1982	0	1350	-264	1614	-4063

1988	0	1850	-82	1432	-2631
1984	0	1560	99	1461	-1170
1965	0	1560	061	1279	109

1966	0	1560	462	1096	1207
1967	0	1560	644	916	2129

1969	0	1650	1007	648	3591
1990	0	1650	1185	462	4059
1991	0	1650	1370	280	4353
1992	0	1650	1551	99	4432

THTS BLHEMULE DIGFEGAFחG MINIMUM TAX,
WISALIWWANEE DF INVESTMENT INTEREST
EXFENSE, GODE EEC. $1 E S$ ETC.

ENTEF TAX ERACEET
($9 \%=$ LHANGE ALLDGATIDNE) 99%
ENTER FEFOENTAGE ALLOICATIONE (0-100\%)
FOR THIE INVESTOR:.
FET: DF INVESTMENT ($999=E N I$) 999

Practice Problems

1. Alvin wants to start a musical career with his brothers Simon and Theodore. Alvin is in the 40% tax bracket. He will contribute 45% of the $\$ 30,000$ needed to build a recording studio. He will participate 20% in the cash earnings, and 45% in the taxable earnings of the company. Alvin expects that the studio will generate $\$ 8,000$ cash per year for the first two years. A further investment of $\$ 15,000$ will come up in year 3 for new equipment. The studio's taxable earnings will start at $\$ 4,200$, increasing by $\$ 1,000$ each year. Cash income for the recording studio will increase to $\$ 12,000$ per year from year 3 to year 10 (the last year of projection).

What will Alvin's cumulative cash flow be from this investment? In what year will Alvin have to start paying taxes on his share of the investment? Assume that the studio will earn a 10% investment tax credit for the initial cash outlay as well as the $\$ 15,000$ in year 3.

Answer: Alvin's cumulative cash flow will be $\$ 3,635$ at the end of year 10. Assuming the first year is 1980, Alvin will have to start paying taxes on this investment in 1985 (\$144).
2. Fred wants to start a helicopter tour service. He is in the 65% tax bracket, and will participate in all aspects of the syndicate at 51%. The initial investment for a four-passenger helicopter is $\$ 12,500$. Fred plans on trading up to a six-passenger helicopter after three years. The group will receive a $\$ 6,500$ tax credit in year 1. If they trade up in year 3, they will receive an $\$ 8,500$ tax credit, and will have to invest another $\$ 19,000$. They will sell the four-passenger helicopter in year 4 , losing $\$ 4,167$ from credit recapture. Cash income will start at $\$ 40,000$ per year, growing to $\$ 48,000$ per year at the start of year 3 , up until year 8 (the final year of projection). Taxable income starts at $-\$ 9,000$, growing by $\$ 2,000$ every year.

What will the total cumulative cash flow be for the eight years of projection? How will the credit recapture affect him in year 4?

Answer: Total cumulative cash flow will be $\$ 182,441$. Fred will have to pay $\$ 1,131$ in taxes in year 4, due to the credit recapture.

Program Listing

```
1. FFIINT "SYNLIGATELI INVESTMENT ANALYSIS"
2 FFIINT
FFEM FOUINLIMFF FIINITTIUN
10 LIEF FN Fi(X) = INT (X + O.5)
1B FEEM NO = MAXIMIMM YEAFS FGF FFIGIEGTION
1% FEM ANL MAXIMUM DIMENSION FOF LINE SO
2O NO=40
30 [IM E(N%),!(NF),T(N%),|(N%)
2OO FFIINT "FOR HOW MANY YEAFS [II YIII WANT"
z10 FFIINT "THIS FFOMEGTIGNN (LIMIT: ";N%:") "%
2O INFUIT Y
2゙天 IF Y % NO THEN 2OO
2OO FRINT
240 FFINT "ENTEFi THE FIFST YEAF IF"
250 FRINT "SYNLILATIDN (E.Eia 1%S1) ";
200 INFIIT Y1
270 FRINT
2OO FFINT "FIF' ENTIFE EYNLIIATE, ENTEFR I:ASH INEDME"
2OO FFINT "FOR EALH YEAF IF FFO,UEITIGN "
OOO FGFI I = 1 TOI Y
Z10 FFINT "YEAR ":I;" IASH INIQME = ";
ZO INFIIT E(I)
340 NEXT I
SO FFINNT
BO FFINT "FOFE ENTIFE EYNLIIEATE, ENTEF TAXAELE"
370 FFINT "INGOME FIF EAI:H YEAR IF FRO.IEGTION"
GO FFINNT "FMGITIVE FGFI INOGME NEGATIVE FGFE LOSG"
390 FOF I = 1 TG Y
400 FFIINT "YEAF ";I;" TAXABLEE= ";
410 INFIIT T(I)
4%0 NEXT I
440 FRINT
450 FFIINT "ENTEF YEAF IF VENTIIRE (1, 2, ETE:) ANL"
4G0 FFINNT "AMOINNT DF INVESTMENT EY ENTIRE GIFOMIF"
470 FFINT "IF INVESTGFS THAT YEAF: AFTEF LAST"
480 FFINT "YEAF, ENTER %%%%%0"
4%0 INFIIT I,XO
500 IF I = 909% THEN 5%0
505 M(I)=X0
520 GOTO 490
```

```
5 0
540
550
560
570
580
5 0
600
610 IF I = 99999 THEN 640
6, U(I)=X0
630 EOTD 600
640 FFIINT
645 FFINN "ENTEF FEFNEENTAIE ALLDIOATIGNS (0-100%)
&5O FRINT "FIR THIS INVESTOFR.""
<5EFFIINT "FOGT GF INVESTMENT (%9%=ENLI) ";
660 INFIIT FI
65 IF F1 % 9%E THEN 2170
670 F'1 = F1 / 100
G5FFFINT " FOT: IF I:ASH INCOME ";
6O INFIIT F2
65 F2=F2/100
60 FFIINT " FILT. IF TAXABLE INOMIME "
G%FFINT " (GR LGEG), ANI EREIITS ";
6% INFUIT FS
700 FOG=FG/100
705 FFRINT
710 FFIINT "ENTEF TAX EFIAIEET"
715 FFINT "(999=!HANGE ALLGM:ATIGNS) ";
720 INFUIT T1
725 IF TI % 9% THEN 640
75O FFIINT "FESUILTS FGFi INVESTGFi IN ":T1
75: FRINT "% TAX BFAL&ET"
755T1 = T1 / 100
760 FRINT
770 FFIINT "YEAF"; TAB( G);"INVE\XiT-"; TAB( 14);"IASH"; TAB( 2O);
775 FFINT "TAX"; TAE( 2E);"NET"; TAE( \XiO); "IIMMLLATIVE"
7BO FFIINT TAE( 7);"MENT"; TAE( 12);"INE:OME"; TAE( 1%):"GAVINI";
7E5 FFINT TAB( 2&):"EASH"; TAB( \XiS);"EASH"
BOO FFFINT
3051=0
EO FOFR I = 1 TO Y
80K=FN R(F1 * .l(I))
E70 II = FN Fi(Fご* E(I))
EOV V FNR(FO * T(I)*T1 + FO*U(I))
O0 S=I-ド-V
9051=51 +5
90 FFFINT Y1 + I - 1: TAE( 6);ド; TAE( 1\Xi):[1; TAE( 1%);
#5 FRINT V; TAE( 2\boxed{)}5; TAE( 35):S1
%40 IF I / % % % INT (I / \Xi) THEN %@0
950 FFIINT
F60 NEXT I
209% FEM FFINT IISLLAIMEF/ELANK LINES
2100 FRINT "THIS SLHELULLE [ISFEGAFLIS MINIMIM TAX,"
Z110 FFINT "LISALLIWANIE IF INVESTMENT INTEFEST"
Z120 FRINT "EXFENSE, EMLE SEG: 1SE, ETE""
```

2150 FFIINT
2140 FFINT
$2150 \quad$ FFINT
2160 EOTO 710
2170 ENLI

Depreciation Switch

An accelerated depreciation method provides for greatest depreciation in the earlier years. At some point, switching to a straight-line depreciation will allow a larger amount to be depreciated in later years than could be done by continuing to use the accelerated method.

Calculations are made using a fixed cost of $\$ 1$ million. The actual cost of the asset involved is unimportant. The million-dollar cost serves only to separate close calculations. Enter the depreciation method to use for this asset, in percent (that is, $125,150,200$, and so forth); the useful life of the asset, in years; and the number of months of depreciation the first year of the useful life (a full first year should be entered as 12 months).

Example

Champion Products acquired a plastic injection machine that has a useful life of five years. Six months' depreciation remains in this fiscal year, and Champion plans to use 200% declining balance depreciation. When should they switch from declining balance method to straight-line depreciation in order to maximize the amounts depreciated?

Answer: Champion should switch methods in the fifth year.

DEFFEEIATION EWITCH

ENTEF METHOL, IN FEFICENT ($0=E N D$) 200
ENTEF USEFIL LTFE OF ASSET, IN YEARS 5
ENTEF NUMEEF DF MONTHE DEFREGIATION
LEFT IN FIRET YEAR $\%$
YEAR OF EWITCH $=5$

ENTEF METHOM, IN FEROENT ($0=E N E$) $\%$

Practice Problems

1. In the above example, what if 12 months of depreciation remains in the current fiscal year?

Answer: The switch should be effected in the fourth year.
2. Using 150% depreciation, when should an asset with an eight-year life be depreciated by the straight-line method, assuming a full year's depreciation remains in the first year?

Answer: The switch to straight-line should be made in the fourth year.

Program Listing

```
10 FFINT "DEFREGIATION SWITIH"
20 FEM - USE MILLION DOLLAR COST TO
30 REM - SEFARATE ELOSE GALIULATIUNS
40 L=1E + G
```

```
SO FEM - FESET AGUUMUILATEI LEFFEGIATION TG ZEFU
60 A = O
70 FFIINT
BO FFINT "ENTEF METHOL, IN FEFIEENT (O=ENDI) ";
O INFIIT T
100 IF T = O THEN ZEO
110 T = T / 100
12O FFINT "ENTEF ISEFIIL LIFE IF ASSET,"
125 FRINT "IN YEARS ";
130 INFUIT L
140 IF L % = THEN 170
15O FFINT "LIMIT % YEAFS MINIMIMM LIFE,"
155 FFINT "FlLEAEE FE-ENTEF:"
160 GMTO 120
I70 FFIINT "ENTEF NIMEEF GF MONTHS LEFFEUIATIGN"
175 FFINT "LEFT IN FIFET YEAF ";
1EO INFUIT M
190 Y = 1
ZOO FEM - EALEILLATE LEFFEEIATIGN AG:LMMLATEM IN THE FIFET YEAF
210A= INT (((M/1Z)* (T / L) * E) * 100 + 0.5)/ 100
20}Y=Y+
2O FEM - GOMFIITE AMOIINT OF LEFFEGIATIGN THIS YEAF
240 [I= INT (((T / L) # (G-A)) * 100 + 0.5) / 100
OS FEM - IF DEFFEIIATIGN IS LESS THAN VALIIE
ZGO FEM - IIVIMED EY FEMAINING LIFE, FFINT YEAF NLIMEEFI
270 IF [^ (M-A) / (L - Y + 1 + (12 - M)/ 12) THEN Z10
2GO FEM - IF NOT, INLFEMENT ALLLIMILLATELI IEFFEGIATIGN
2% A = A + [1
OO GOTO 2OO
Z10 FFIINT
ZO FFINT "YEAF IF EWITIH = ";Y
30 FRINT
#40 GIOTG 60
ESO ENII
```


References

U.S. Internal Revenue Service Code, Section 167 (b) and Section 167 (e) (1).
U.S. Treasury Department, Internal Revenue Service. Regulations, Sections 1.167(b)-0, 1.167(b)-1, 1.167(b)-2, and 1.167(e)-1.

Apportionment by Ratios

This program divides a quantity into the proportion that each of a group of numbers bears to the sum of that group. You are first asked for the number of decimal places that you wish shown from whole numbers down to 13 decimal places (if your computer is that accurate). You then enter the value to be apportioned, and the number of parts into which it is to be divided. You then enter each component of the group to be used as the basis for apportionment. The program prints out a table that shows each of these amounts, the percentage each is of the group total, and the corresponding apportioned amount. At the conclusion, it prints the totals of these three columns.

Example

Ten employees at Widgets, Inc., are receiving bonuses from a $\$ 30,000$ pool. If each receives a share proportionate to his salary, how much does each one get?

Name Nbelson	Salary A Boucher
Q54,000	
Charleston	$\$ 47,000$
Dryden	$\$ 30,000$
Evans	$\$ 29,500$
Freisner	$\$ 26,000$
Goodine	$\$ 24,500$
Holloway	$\$ 21,000$
Ishikawa	$\$ 17,500$
Johnson	$\$ 15,000$

Answer:
AFFORTIONMENT EY FATIOS
ENTER THE NUMEEF DF DECIMAL
FLACES OF FDUNDING YOU WANT:
O FOR WHOLE NIMEERS, 1 FOR TENTHS, ETL:
IIF TO \%.
$? 2$
ENTEF TOTAL TO EE AFFORTIUNEI
030000
ENTEF NUMEEF OF FORTIONS
710
ENTER AMIUNT 1
254000
ENTEF AMOUNT 2
? 47000
ENTER AMOUNT 3
740000
ENTEF AMOUNT 4
733500
ENTER AMOUNT 5
729750
ENTER AMOUNT 6
726000
ENTEF AMOUNT 7

```
24500
ENTEF AMOUNT E
21000
ENTEF: AMOUNT %
717500
ENTER AMIOUNT 10
715000
AMOUNT FERCENT AFFOFTIONEEI
\(54000 \quad 17.52 \quad 5255.47\)
        47000 15.25 4574.21
        40000 12.98 5892.94
        3500 10.87 3260.34
        29750 %.65 2595.36
        26000 8.43 2580.41
        24500 7.95 2384.43
        21000 6.81 2043.8
        17500 5.68 1703.16
        15000 4.86 145%.86
TOTALS 308250 100.00 30000
LAST ITEM ALUISTED WHEFE NELESSARY
```


Practice Problems

1. A mayor running for re-election wants to divide his campaign workers among the city's six districts based on the population of each district. He has 42 campaign workers, and the districts are populated as follows: District 1: 29,842; District 2: 17,420; District 3: 14,625; District 4: 24,314; District 5: 21,209; District 6: 18,956 . How many workers should he place in each district?

Answer: District 1: 10; District 2: 6; Disrict 3: 5; District 4: 8; District 5: 7; District 6: 6.
2. A winery has 120 bottles of wine that it wants to distribute among its employees. If the wine is divided in proportion to each employee's seniority, how much wine does each employee get?

Name	Years Employed
Jones	22
Romero	18
Lippitt	14
Doyle	8
Peterson	4
Covey	2
Miller	2
Bennett	1

Answer: Jones: 37 bottles; Romero: 30 bottles; Lippitt: 24 bottles; Doyle: 14 bottles; Peterson: 7 bottles; Covey: 3 bottles; Miller: 3 bottles; Bennett: 2 bottles.

Program Listing

```
10 FRINT "AFFORTIONMENT EY FIATIOS"
20 [IM A(100)
30 FRINT "ENTEF THE NUMEEF IF DELIMAL"
40 FRINT "FLACES OF ROUNDING YOU| WANT:"
SO FRINT "O FOR WHOLE NUMEEFS, 1 FOR TENTHS, ETC:"
```

```
GO FFINT "LP TQ %"
70 INFIUTT FII
BO FFIINT "ENTEF: TQTAL TQ EE AFFOFTIONEL"
%O INFITT S%
100 FFiINT "ENTEF' NIMEEF' OF FGFITIGNE"
110 INFIIT N
119 FEM ENTEFI FIATIO AMIIINTS DNE EY DNE
120 FOR I = 1 TO N
130 FFINT "ENTEFI AMIUNNT ";I
140 INF|IT A(I)
150 S1=S1+A(I)
16O NEXT I
170 FFIINT TAB( B);"AMIMNT"; TAB( 1夕);"FEFiEENT"; TAB( SO); "AFFGFTIGNEL"
180 FFINT
190 FOFI I = 1 TIN - 1
200F=INT (10000 * A(I)/51 + 0.5)/100
210 F'1 = F'1 + F
20FF=INT ((E2*A(I)/E1)*10* (Fi1) + % S%)/ 10* (FI)
205% = 53 + Fi
240 FFINT TAE(E);A(I); TAB( 19);F:% TAE( \XiO);FO
250 NEXT I
25FFF=INT ((100-F1)*10* (F1) + 0.5)/10 * (Fi1)
2545R=INT ((52-53)* 10* (F1) + 0.5)/10 * (F1)
260 FFINT TAE( E):A(N): TAB( 19);FF: TAB( \XiO):SF:
270 FFINNT
2G FFINT "TOTALS"; TAB( \Xi);S1; TAB( 19);"100.00"% TAB( #0);S2
2% FFINT
ZOO FFINT "LAST ITEM AD,|ISTED WHEFE NELESSAFYY"
310 ENLI
```


Internal Rate of Return

Internal Rate of Return (IRR) is the rate at which the sum of all cash flows discount to the amount of the initial investment. This program finds the rate by using a half-interval search.

To use the program, enter the amount of the initial investment, then the term of the investment (in years), and the cash flow amount for each year. Enter outflows (funds you invest) as negative numbers. Enter an initial investment of zero to end the program.

IRR can also be used to compute the yield to maturity of a bond by entering the price of the bond as the initial investment, the number of years to maturity as the term, coupon amounts for each year they will be received as the cash flow amounts for those years (enter the total amount to be received in each year), and coupon amount(s) plus the maturity value of the bond in the last year (when the bond will mature). The IRR returned by the program is the yield to maturity of the bond.

Program Notes

The half-interval search at lines 320 to 540 will find rates of return between 0% and 99%. If this range is not wide enough to suit your needs, change the initial values of variable L at line 330 and H at line 340 . These are the low and high search limits. Make sure that upon the first execution of line 370, the value of $(\mathrm{L}+\mathrm{H}) / 2$ is not zero, as that will cause premature exit from the search algorithm.

Example

Bob T. has an opportunity to invest in a venture. An initial investment of $\$ 10,000$ is needed, with cash returns of $\$ 4,000, \$ 5,000$, and $\$ 3,000$ over the next three years. His required rate of return is 15%. Should Bob accept this investment?

Answer: No. The IRR of this investment is 10.1331%. The accept/reject criterion stipulates rejection of any investment whose IRR is less than the required rate of return.

TNTEFNAL FATE OF FETUFN

```
ENTER THE AMOUNT OF THE INITIAL.
```

INVESTMENT (O TO ENDI) ?10000

NUMEER OF CASH FLOW FERTOMS ?
(ENTEF INFLOWS AS FOSITIVE, OUTFLDWE AS NEGATIVE AMOUNTS)
GASH FLOW FOR FERIOL 1 ?4000
255000
$=9000$

INTEFNAL RATE OF FETUFN $=10.1351 \%$

ENTEF THE AMOLNT OF THE INITIAL
INVEETMENT (O TO ENCI) OO

Practice Problem

A new bond issue offers a coupon rate of 8.25% and matures in 7 years. What is the yield to maturity of a $\$ 10,000$ bond if the price is $\$ 8,500$?

Answer: The yield to maturity is 11.4831%.

Program Listing

10 FRINT "INTEFNAL RATE DF FETUFN"
20 REM FUNGTION TG FOUNG TG NEAREST HUNDREDTH
30 LIEF $F N A(X)=\operatorname{INT}(X * 100+0.5) / 100$
40 FEM FUNGTION TO FIOUNG TO NEAFEST TEN-THOUSANITH
50 LEF FN $B(X)=\operatorname{INT}(X * 1 E 4+0.5) / 1 E 4$
60 FEM GHANGE SIZE OF ARRAY G() IF NEGESGAFY
70 [IM E(12)
80 FRINT
90 FFINT "ENTEF THE AMOUNT DF THE INITIAL."
95 FRINT "INVESTMENT (O TO ENO) ":
100 J.NFIIT I
110 FEM ENG FROIGAMO
120 JF I $=0$ THEN 590
130 FFINT
140 FRINT "NUMEER OF CASH FLOW PERIOLS ":
150 INFIIT N
160 FEM FESTAFT IF NUMEEF DF EASH FLOU FEFIOLS IE JNVALIM
170 IF N < 1 THEN EO
$1 E O$ FEM LIOF TG INFUT ANL EIM EASH FLOW AMOUNT(S)
$190 \mathrm{~F}=0$
200 FRINT
210 FRINT " (ENTEF INFLOWS AS FOSITIVE,
215 FRINT "OUTFLOWS AS NEGATIVE AMOUNTS)"
$2 \mathrm{FOF} .1=1 \mathrm{TIN} \mathrm{N}$
230 IF $1>1$ THEN 260
240 FFINT "GAGH FLOW FOF FEFTOL ";
250 GOTO 270
260 FFINT " ":
270 FFINT !"" ":
2 EO INFUT 区 (. 1)
300 NEXT , I
310 FRINT
2O FEM INITIALIZE VALUES
$350 \mathrm{~L}=0$
$340 H=1$
$350 \mathrm{FI}=0$
360 FEM GUESS FATE $=$ (HIGH FATE + LOW RATE) $/ 2$
$370 \mathrm{~F}=(\mathrm{L}+\mathrm{H}) / 2$
BEO FEM EXIT IF FATE FEMAINE UNGHANGED
390 IF F $=$ FI THEN 550
400 FEM SET LAST GUESS TG EURFENT GIESS
$410 \mathrm{R1}=\mathrm{R}$
420 FEM ALIL FRESENT VALUES FOF EAUH YEAF BASEL ON RATE OF
$430 \mathrm{~T}=0$
440 FOF $1=1$ TO N

```
450T=T T FNA(G(1) / ((F+1) \therefore , 1))
460 NEXT .l
470 FEW IF TOTAL FFESENT VALMES EGUAL INVESTMENT, EXIT
4BO IF T = I THEN 5SO
4O FEM SET HIGH OF LINW FATE TE GUFFENT GLESG
500 IF I ` T THEN 5OO
=10L=F
520 EMTO $70
EOH=F:
540 GMTO }37
F5O FFINT
GOO FFINT "TNTEFNAL FIATE IF FETUFN= "; FN E(Fi* 100):"%"
570 FFINT
GO GOTOEO
5%O ENM
```


References

Chase and Aquilano. Production and Operations Management. Homewood, Ill.: Richard D. Irwin, Inc., 1977. Pages 131-32.

Rosen, Lawrence R. The Dow Jones-Irwin Guide to Interest. Homewood, Ill.: Dow Jones-Irwin, 1974.
Solomon and Pringle. An Introduction to Financial Management. Santa Monica, Calif.: Goodyear Publishing, 1977. Pages 257-61.

Financial Management Rate of Return

Financial Management Rate of Return (FMRR) differs from Internal Rate of Return in several respects. For some investments, particularly real estate ventures, FMRR will provide a more realistic value than IRR. FMRR assumes only cash flows after financing and taxes are considered, and it ignores the fact that other sources of funds may be available.

To use the program, you enter the term of the investment (in years), then a liquid investment rate. This is a rate at which funds can be invested in any amount, at a guaranteed after-tax rate, and withdrawn as needed (such as a savings account). You also enter a "safe"' fixed investment rate. "Safe" means the return on the investment will be at least that high. This investment can be a real estate project or other fixed investment of comparable risk at after-tax rates above the liquid rate, such as certificates of deposit or Treasury bills. The fixed investment should have a minimum amount that can be invested. Enter this amount, too.

The program will indicate points where you will be expected to invest funds in the liquid and fixed investments, the actual initial investment you will need to make (the difference between that amount and the original initial investment must be invested at the fixed rate at the beginning of the first year), the actual total return on the investment, and the rate at which the actual total return discounts to the actual initial investment (the FMRR).

Example

Horatio plans to buy an apartment house. The terms require $\$ 10,000$ down payment to be made now, and payments of $\$ 50,000$ to be made next year and the following year. Cash flows indicate that at the end of years 3 and 5, Horatio can expect to receive $\$ 30,000$ from his investment. He plans to remodel the building during year 4 , at an estimated cost of $\$ 20,000$. Finally, in year 6 he plans to sell the building for $\$ 250,000$. The liquid investment rate available is 5%, and a minimum $\$ 10,000$ fixed investment will earn at least 10%. What is the FMRR on Horatio's investment?

Answer: 19.348\% (The IRR of this investment is 25.2%.)

```
FINANG:IAL MANAGEMENT* FATE IF FETIIFN
NIIMEEF DF YEAFS ?%
LIGIIII INVESTMENT INTEFEST FATE ?G
\triangleAFE` FIXEI INVESTMENT
INTEFEST FAATE OIO
MINIMIN AMIUNT IF FIXEO
INVESTIMENT ?100OO
(ENTEF INFLDWG AS FOGITIVE,
IIITFLDWS AS NEGATIUE:)
ENTER GASH FLOW AMOUNT FOR YEAF
    0 %-10000
    1 %-50000
    2-50000
    3%0000
    4-20000
    5%:0000
    6%50000
```

```
LIOIIII INVESTMENT IF * 19047
TI EE MALE AT ENLI IF YEAF O
FIXEI INVESTMENT IF क10%心
TI EE MALE AT ENDI IF YEAF: Z
FIXEII INVESTMENT GF $:OOOO
TI EE MALE AT ENL DF YEAF: S
AMTMAL TOTAL INITIAL INVESTMENT
    =$102971
TGTAL FETIIFN IN INVESTMENT
    = 串297577
```

FINANE I AL MANABEMENT*
FATE OF FETUFN $=1 \%, 248 \%$
WOUILI YOU LIFE TO FE-FUN THTS FFGIFFAM
WITH NEW LIATAO (Y/N) ZN

Practice Problems

1. What is the FMRR on a 6 -year project if the liquid rate is 7.25%, the fixed rate is 15% (with a minimum investment of $\$ 10,000$), and the initial investment is $\$ 100,000$? Cash flows will be $\$ 30,000$ inflow year $1, \$ 45,000$ outflow year 2 , and $\$ 50,000$ inflows during each of the remaining 4 years of the term.

Answer: The FMRR is 11.783%.
2. On a 4 -year investment, requiring $\$ 10,000$ initially and cash flows of $-\$ 2,500, \$ 5,000,-\$ 2,500$, and $\$ 25,000$ during the term, what is the FMRR? The liquid rate is 8.5%, and a minimum $\$ 1,000$ fixed investment will return at least 13%.

Answer: The FMRR is 23.303%.

Program Listing

```
10 FRINT "FINANGIAL. MANAGEMENT" RATE OF RETUFN"
2O REM FUNLTION TG FOUND TO NEAREST THOUGANDTH
SO DEF FN B(X) = INT (X * 1ES + 0.5) / 1ES
40 FEM -- EHANGE DIMENSION OF ARFAY E()
45 REM -- TG MAXIMUMM NUMEER OF YEAFS
5 0 ~ D I M ~ E ( 1 2 )
60 FRINT
70 FFINT "NLIMEEF OF YEARS ":
80 INFUTT N
90 FFINT "LIDUID INVESTMENT INTEFEST RATE ";
100 INFUT R1
110 R1 = F1 / 100 + 1
120 FRINT "SAFE" FIXED INVESTMENT "
125 FFINT "INTEFEST RATE ";
130 INFUIT F2
140 R2 = F2 / 100 + 1
150 FRINT "MINIMUMM AMOUNT OF FIXED "
155 FFIINT "INVESTMENT ";
```

160 INFIT M
170 FFINT
1Ξ FFINT＂（ENTEF INFLOWE AS FOSITIVE，＂
1SE FFINT＂GIUTFLIWG AS NEGATIVE＂）＂
190 FFINT
OOO FFINT＂ENTEF EASH FLGW AMGINT FGF YEAF＂
25 FRINT＂O＂\％
Z1O INFITTEO
220 FOFi $1=1$ TM N
2O FFINT＂＂：I：＂＂：
240 INFIIT I（1）
玉SO NEXT ．
260 FFINT
Z7O FEW FEMGVE ALL FUTUFE GIITFIMWE EY ITILIZINE
2 ZO FEM FFIGF INFLOWS WHEFE FGESIELE
FO FIEM
OOO FEM FIFET；FTND IUITFLIWE
310 FOF $\quad 1=1$ TON -1
ZO FEM SFIF GVEF INFLIWE ANI ZEFO AMIUNTE
30 IF $\because(.1) \%=0$ THEN 520
340 FEM GIITFLIW FEIINI
$50 A=E(1)$
$\because 60$ FEM NIW FINLI FFIIEF INFLIN（E）
$370 K=0$
38 ド＝ド＋ 1.
5% IF ド＝．1 THEN 5O
400 IF $\because(.1-ト ゙)<0$ THEN $=0$
410 FEM INFLOW FGINNI，REMOUE AMIINT NEELEII
415 FEM TG ZEFOG DITFLEW IF FIGEIELE

430 IF E（．1－ド）$\quad=0$ THEN $4 \% 0$
440 FEM IF NIT ENGUIH MDNEY AVAILABLE，
445 FEM GOFFEET TG ZEFIO THE INFLGW
$450 A=A+\operatorname{INT}(A E S(E(, 1-ト ゙)) * F 1 \therefore$＊$)$
460 ■（．1－ド $)=0$
470 E（．1）＝A
480 EITIE EOO
$4 \% 0 \mathrm{O}(.1)=0$

510 FFTNT＂TG EE MADE AT END GF YEAR＂\％．1－ド
520 NEXT ．I
$5: 50$ FFINT
540 FEM［ISOLIMNTEMAINING EIUTFLIWS TO
545 FEM FFESENT AT LIEUILI INTEFEST FATE

560 IF $\because(1) \quad=0$ THEN 50
$570 \mathrm{EO}=\mathrm{EO}+\mathrm{FNE} \mathrm{E}(\mathrm{E}(1) / \mathrm{Fi} 1 \times, 1)$
$580 \mathrm{E}=1)=0$
590 NEXT ．．
$600 \mathrm{OO}=\mathrm{INT}(\mathrm{ABS}(\mathrm{OO})+0.5)$
G10 FEM FOMFOINI FWFWAFIU ALL FEMATNING
620 FEM INFLEWE EFEATEF：THAN MTNJMIIM
GS FEM FTXEL INVESTMENT AMUIINT
60 FOFi $1=1$ TO $N-1$
$\Leftrightarrow 40$ IF I（．1）\because M THEN $\because 70$

```
650[(N)= C(N) + FNE(C(.1) * F2 * (N - .l))
660 FRINT "FIXEI INVESTMENT OF $":C(.1)
665 FFINT "TO BE MADE AT ENL DF YEAF ";.l
670 NEXT .1
60 FFINT
690 E(N)= INT (ABE (G(N)) + OnS)
700 FRINT "ADTUAL TOTAL INITIAL INVESTMENT"
705 FFINT " = $":00
710 FRINT "TOTAL RETUFN ON INVESTMENT"
715 FFINT " = $":O(N)
720 REM INITIALIZE LOW ANI HIGH
725 FEM GUESSES, SET LAST GIESS TO ZEFO
730 L = 0
740 H=1
750 FO = O
760 Fi=(H+L)/2
7 7 0 ~ F E M ~ E X I T ~ I F ~ R A T E ~ R E M A I N S ~ U N G H A N G E D
780 IF F = RO THEN }91
790 FEM SET LAST GUESS TG EURFENT GUESS
800 FO= F
E10 FEM EALCULATE FRESENT VALIIE GF
E15 FEM FUITURE VALIIE EASED ON RATE OF Fi
E2OT = INT (D(N) / ((F + 1) `N))
8SO REM IF FRESENT VALUE EQUALS INVESTMENT,EXIT
840 IF T = EO THEN }91
850 IF T > EO THEN E%O
EGO REM EET HIGH DF LOW GUESS TO CUFFENT GUESS
870 H=F
880 GOTO 760
800 L = Ri
900 GOTO 760
910 FRINT
%2O FRINT "FINANGIAL MANADEMENT""
925 FRINT "RATE OF FETLIRN = "; FN B(Fi * 100):"%"
9% FEM FESTAFT IF END FFIOIRAM?
90 FFINT
950 FRINT "WOULD YOU LIKE TG FE-FUN THIS PFOGFAM"
95 FRINT "WITH NEW LATA? (Y/N) ":
760 INFIIT Z$
970 IF Z$ = "Y" THEN 60
980 IF Z婁 < > "N" THEN 950
9%0 END
```


References

Determination and Usage of FM Rate of Return. Detroit: Realtron Corporation, 1973.
Messner, Schreiber, and Lyon. Marketing Investment Real Estate Finance Taxation Techniques. Chicago: Realtors National Marketing Institute of the National Association of Realtors, 1975.

Financial Statement Ratio Analysis

This program calculates 22 ratios of interest to an investor, based on data you enter from a firm's financial statements. They indicate a firm's profitability, liquidity, activity, and capital structure. You should only compare the ratios of a firm with others in the same industry, or against an industry average. To use the program, enter the name of the firm which you are analyzing, the date of financial statement and selected dollar amounts from it. You also need to enter the number of common shares outstanding, market price per share and dividends paid per share.

Example

Jim would like to invest in an issue of common stock from a manufacturer of computer equipment. Its financial statements are shown below. Wimpytron has 7,000 shares of common stock outstanding at a market price of $\$ 17.50$ per share. Dividends of $\$ 1.25$ per share were paid to stockholders of record from July 1979 through June 1980.

Net Sales		$\$ 985$
Cost of Goods Sold		
\quad Beginning Inventory	$\$ 380$	
Purchases	200	
Less: Ending Inventory	200	
Total Cost of Goods Sold		$\underline{380}$
Gross Margin	150	
Selling Expenses	220	
General \& Administrative Expenses	70	
Interest Expense	440	
Total Expenses	155	
Income Before Taxes	78	
Income Taxes	$\underline{73}$	
Net Earnings After Taxes		

How would you run the program to analyze this firm?

ALSO ENTER:
LOMMON EHARES DUTSTANLING 77000 MARKET FRIEE PER SHARE 717.5

LIVIDENDS PEF SHARE 71.25

NET WOREING GAFITAL		\$140000
ACID TEST	(BUICK) RATIG	. $739: 1$
	GURRENT FATIO	1.60\%:1

------ACTIVITY
EALES FER DAY $\$ 269 \mathrm{E} .6$
DAYS SALES DUTSTANLING 37.05G DAYS INVENTORY TURNOVER 1.31 TIMES
-----INDEBTEDNESS-----
EREDITORE' INTEREST IN FIFM 50\% TIMES INTEREST EAFNED 4.329 DEBT TO EOUITY 1:1
LONG-TEFM DEET TO NET WORTH . 452:1 LONG-TEFM DEET TO EAFITAL . $311: 1$

```
    -----EDUITY------
ETOCKHOLDEFE* INTEFEST IN FIFM SO\%
                                    FAYDUT RATIO . 114:1
                EAFNINGS YIELI \(62.9 \%\)
            BOIOK VALUE/EHARE \(\$ 60\)
        FRICE/EARNINGS FATIO 1.591:1
                DIVIDEND YIELD 7. \(1 \%\)
```

LO YOU WANT ANGTHEF ANALYSIE（Y／N）TN

Practice Problems

1．Suppose the balance sheet is altered so the stockholders＇equity is $\$ 390,000$ ．（The long－term debt will be changed by the program．）What ratios will change，and what will their new values be？

Answer：Return on equity， 19.7% ；creditors＇interest， 53.6% ；debt to equity， $1.154: 1$ ；long－term debt to net worth， $0.564: 1$ ；long－term debt to capital， $0.361: 1$ ；stockholders＇interest， 46.4% ；book value， \＄55．714．

2．If you interchange the amounts for accounts receivable and cash，what ratios will change and what will their new values be？

Answer：Days sales outstanding changes to 18.528 days．All others ratios remain unchanged．

Program Listing

```
10 FFIINT "FINANEIAL ETATEMENT FATIOI ANALYSIS"
OO IIM [I(2O)
30 FIEM
40 FEM LI(1) = NET SALES
FO FEM II(こ) = EEGINNING INVENTOFPY
OO FEM [I(S) = ENLINLI INVENTGFYY
70 FEM [I(4) = EOST DF GOMDS EOLM
EO FIEM ח(E) = INTEFEST EXFENSE
90 FEM II(E)= FRETAX INEUME
100 FEEM II(7) = TAXES
110 FEM ח(S) = ■:ABH
120 FEM [I(9) = ALOLINTE FELEIVAELE
1:O REM D(10)= NGTES RECEIVAELE
140 FEM [I(11)= TGTAL. ASEETS
150 FEM IM(12)= LUFFENT LIABILITIES
160 FEM [I(1S)=EWUITY
170 FEM [I(14)= SHARES DUITSTANDINET
1SO FEM [I(15)= MAFKET FFIIEE FEF SHAFE
1O0 FEM [I(1ふ)= LIVILIENIS FAII
2OO FEM
Z10 MATA "NET EALES","EEGINNING INVENTOFIY"
215 [IATA "ENDINGI INVENTIFRY"
#O [ATA "ロOST MF MMULS SOLL","INTEFEST EXFENSE"
ZOO [IATA "FFE-TAX INLDME","INEDME TAXES", "EASH"
240 IIATA "ACIOUNTS FECEIVAELE"
245 [IATA "NOTES % MAFKETABLEE SEOUFITIES"
#% IATA "TGTAL ASSETS","IIFFENT LIAELITIES"
ZOO [IATA "\XiTOUK゙HOLDERE* EOUITY"
ZGS [IATA "EUMMIN SHAFES IUITSTANLINI"
```

```
270 [ATA "MARKET FRICE PER SHAFE"
275 [ATA "LIVIDENLS FEF SHARE"
280 FRINT
290 FFINT " NAME OF FIFMM ";
300 INFUIT N$
310 FRINT " MONTH/DAY/YEAR ";
320 INFUT 口婁
SO REM ENTEF INCOME ETATEMENT ACTOUNTS
340 RESTORE
55% FRINT "------INCIME STATEMENT--.----".
360 FRINT "ENTER AMOUNTS FOR:"
370 FOR I = 1 TO 7
360 GOGUB 1620
590 NEXT I
4 0 0 ~ F E M ~ E N T E F ~ E A L A N O E ~ S H E E T ~ A C C O U N T S ~
410 FRINT ".---------BALANCE SHEET-------"
420 FFRINT "ENTEF AMOUNTE FOR:"
430 FOR I = 3 TO 13
440 GOE|B 1620
450 NEXT I
460 FFRINT
470 FRINT "ALSU ENTEF:"
4EO FOR I = 14 TO 16
490 GOE|IB 1620
500 NEXT I
5 1 0 ~ F R I N T
520 FRINT "--EVALUATION OF ";N$:"--"
5 2 5 ~ F R I N T ~ " ~ B Y ~ R A T I O ~ A N A L Y S I S " '
SO FRINT " ENDING FEFIOL: "; D$
5 4 0 ~ P R I N T ~
550 FRINT "------FROFITABILITY-.--.-"
560 Tक = "RETUFN DF ASSETS"
570 X1 = 2
50 x0= (D(6)- L(7)) / [(11)
590 605UB 1670
600 T$ = "RETIIRN IN EQUITY"
610 X0= (口(6) - п(7)) / п(13)
620 GOE|E 1670
6O Tक = "RETUFN OF INVESTED EAFITAL"
640 X1 = 2
650 X0 = (L(6) - D(7)) / (L(11) - L(12))
660 GOGUB 1670
670 T$ = "EARNINGS FER SHARE"
680 X1 = 3
690 X0= (D(6)- [(7))/ [(14)
700 GOSUE 1670
710 T生 = "OFERATING FATIO"
720 x1 = 1
730 X0 = (D(1) - L(6)) / L(1)
740 GOSUB 1670
750 FFiINT
760 FFINT " -----LIQUIDITY-----"
770 Tक = "NET WORKING GAFITAL"
780 X1 = 3
790 REM CALGILLATE LURFENT AGSETS
```

```
B00 E1= M(S)+[M(9)+[10) + D(3)
G10 FEM EALEULATE LGING-TEFM IEET
BOLO= L(11)-[(12)- L(13)
EO XO=E1 - L(12)
840 515%118 1670
EOT完 = "AEID TEST (G|IE&゙) FATIG"
800 X1=1
EO X0 = (E:1 - M(3)) / M(12)
E40 MOSIIE 1670
E%0 Tw = "LILFFENT FIATIG"
700 <0= [1 / ח(12)
G0 GIGMB 1670
920 FRINT
OO FFINNT " ------AITIUITY------."
#40 T生 = "SALES FER DAY"
70 X1=3
F0 X0= I(1)/ % 5
770 GMEUE 1670
GO T* = "MAY\Xi \XiALES IIITSTANLINL"
90 X1=0
1000 X0 = [1(9) / ([1) / % 365)
1005 X0 = INT (X0* *000 + 0.5)/1000
1010 FFINT TAE( 5);T$;" ";XO;" ";
1020 FRINT " [IAYS"
10:O FEM IF NOI INVENTIFY IATA, SKIF FFINTINEG
1040 IF [1(2) + LI(E)=0 THEN 10%0
1050 T$ = "INVENTOFY TUFNONEF"
10<0 X0 = [(4) / ( (L(2) + [(3)) / 2)
106 X0= INT (X0 * 1000 + 0.5)/ / 1000
1070 FFINT TAE( %);T$;" ";XO;" ";
108O FFINT " TIMES"
10%0 FFINT
1100 FOFINT " ------INLIEETELNNES-..........
1110 T$ = "EFELITGFS" INTEREST IN FIFM"
1120 X1 = 2
1130 X0= ([1(11) - [(1S)) / M(11)
1140 GO5|E 1670
1150 Tw = "TIMES INTEREST EAFNE["
1160 X1=0
```



```
1180 GOEME 1670
11E5 FFFINT
11%0 T* = "LEET TO EOLITTY"
1200 X1=1
1210 x0 = ([1(11) - [(13)) / [(13)
1220 EOSIIE 1670
12ZO T* = "LONG-TEFM LIEET TO NET WOFTH"
1240 x0 = LO / ח(13)
1250 GIGIIE 1670
12GO T$ = "LONE-TEFM LEET TII EAFITAL"
1270 人0=L0 / (LO + D(13))
120 GME|IE 16.70
1200 FFINT
1.%OO FFFINT " ------EEUIITY--------""
1Z10 T$ = "\XiTOIERHOLLEFS* INTEFEST IN FIFM"
```

```
1220 X1 = 2
1330 x0 = (D(13)) / D(11)
1340 GiOS|B 1*70
1350 T$ = "FAYOUIT RATIO"
1360 X1 = 1
1370 x0 = D(16) / ((L(6) - L(7)) / [(14))
1330 GOGUB 1670
1390 Tक = "EAFNNNGS YIELL"
1400 X1 = 2
1410 X0 = ((D(6) - M(7)) / D(14)) / D(15)
1420 GOSUB 1670
1430 T$ = "BOOK VALUE/SHARE"
1440 X1 = 3
1450 x0 = [(13)/ [(14)
1460 GOGUE 1670
1470 T$ = "FRICE/EARNINGG RATIO"
1480 X1 = 1
1490 X0 = L(15) / ( (I) 6) - L(7)) / L(14))
1500 GOSUB 1670
1510 T$ = "DIVIDENI YIELD"
1520 x1 = 2
1580 x0 = [(16)/ [(15)
1540 GDSUB 1670
1550 FRINT
1560 FRINT "LOL YOU WANT ANGTHER ANALYSIS (Y/N) ";
1570 INPIIT T&
1580 IF T$ = "Y" THEN 280
1590 IF T& < > "N" THEN 1560
1600 GOTO 1840
1610 FEM LIATA ENTRY ROUITINE
1&20 FEAD T系
1630 FFiINT TAB( З1 - LEN (T$));" ";T$;" ";
1640 INPUT LI(I)
1650 FETURN
1660 FEM SUBROUTINE TO FRINT RATIOS & TUFNOVER DATA
1670 FRINT TAE( 31 - LEN (T&));" ";Tक;
1680 x0 = INT (X0 * 1000 + 0.5) / 1000
1690 FEM RATIO FORMAT IF X1=1
1700 IF XI = 1 THEN 1780
1710 FEM FATE FORMAT IF X1=2
1720 IF X1 = 2 THEN 1800
1730 REM LOLLAR FORMAT IF X1=3
1740 IF X1 = 3 THEN 1E20
1750 REM DEFALLLT TO NO FORMAT IF X1=0
1760 FRINT " ";XO;
1770 RETURN
17E0 FRINT " ";XO:":1"
1790 RETIURN
1800 FRINT " ";XO * 100;"%"
1810 RETURN
1s20 FRINT " $";XO
1330 RETINRN
1840 END
```


References

Slavin, Albert, and Reynolds, Isaac. Basic Accounting (3rd ed.). Hinsdale, Ill.: Dryden Press, 1975. Solomon, Ezra. An Introduction to Financial Management, Santa Monica: Goodyear Publishing Company, 1977.

Profit Sharing Contributions

This program calculates the profit sharing contributions for up to 250 employees. Some profit sharing plans are not "integrated" (that is, the contribution made for each employee is exactly proportionate to his salary). If his compensation is 5% of the total compensation of all participants, then he is allotted 5% of the total contribution for that year, and so on.

Integrated profit sharing plans are less straightforward. In this case, a salary level no higher than the current Social Security wage base ($\$ 22,900$ in $1979, \$ 25,900$ in 1980) is chosen as the integration level. Each employee whose salary exceeds the integration level receives a percentage (not more than 7\%) of the amount by which his earnings exceed the integration level. The remainder of the total contribution is distributed proportionate to salary. If the integrated portion of the total contribution exceeds the total, it is reduced proportionately. If this happens, those whose salary is less than the integration level receive nothing.

This program handles both integrated and non-integrated plans of up to 250 participants. You first enter the name and salary of each employee/participant. After you enter the last employee's name and salary, enter anything for the name, and -1 for the salary when the program requests them. The program then prints out the total of the salaries, and the usual 15% limit on contributions. You then enter the amount of the contribution as a decimal fraction of the total compensation. You are asked if the plan is integrated and, if so, what the integration level and percentage are.

The program then prints a table showing each employee's name, salary, and the amount of his allocation, divided into integrated and non-integrated portions. The program prints the totals for all employees, and then allows you to go back and change some or all of the data.

Example

The following employees are all participants in a profit sharing plan:

Name	Salary
Connell	$\$ 150,000$
Johnson	22,900
Smith	15,000
Jones	12,000
Brown	10,000

Assuming a 15% company contribution, what allocation would be made to each employee in a nonintegrated plan?

Answer:
FFOFIT EHARING EONTRIBUTIONE
ENTEF EADH EMFLGYEE'S NAME AND SALARY
ENTEF -1 AS THE SALAFY TO ENLI ENTRY
CONNELL, 150000
$\because O H N E O N, 22900$
TSMITH, 15000
?,IINES, 12000
TBFOWN. 10000
7A, - 1
TOTAL EOMFENSATIGN $=209900$
15% LIMITATION $=31485$
$F / S \%$ EONTRIBIITION AS A LECIMAL $=00.15$

```
IS FLAN INTEGRATED? (Y/N)?N
    INTEGRATED NON-INTEG.
\begin{tabular}{lcccc} 
NAME & SALARY FORTION & FORTION & TOTAL \\
GONNELL & 150000 & 0 & 22500 & 22500 \\
UOHNSON & 22900 & 0 & 3435 & 3435 \\
SMITH & 15000 & 0 & 2250 & 2250 \\
HONES & 12000 & 0 & 1800 & 1800 \\
EFOWN & 10000 & 0 & 1500 & 1500 \\
TOTALS & 209900 & 0 & 31485 & 31485
\end{tabular}
WANT LIFFERENT SALAFIES? (Y/N) TN
DIFFEFENT CONTRIBUITION? (Y/N) TN
GHANGE WHETHER INTEGRATEIT? (Y/N) ?N
IIFFERENT INTEGRATION LEVEL? (Y/N) ?N
DIFFERENT INTEGFATION %%(Y/N) %N
```


Practice Problems

1. For the same group of employees, what would be the allocations in a plan integrated at 3% over \$15,000?

Answer: Connell: \$23,486.40; Johnson: \$3,204.29; Smith: \$1,943.64; Jones: \$1,554.91; Brown: \$1,295.76.
2. If the plan is integrated at 7% over $\$ 22,900$, what are the allocations for these same employees?

Answer: Connell: \$25,038.97; Johnson: \$2,464.34; Smith: \$1,614.20; Jones: \$1,291.36; Brown: \$1,076.13.

Program Listing

```
5 FFINT "FFOUFIT SHARING CONTRIBUTIONS"
9 FEM FOUNDOFF FINETION
10 DEF FN \(R(X)=1 N T(100 * X+0.5) / 100\)
20 DIM A \((250), B(250), E(250), D(250)\)
120 FFINT "ENTEF EACH EMFLGYEE'S NAME AND SALARY"
140 FRINT "ENTEF - 1 AS THE SALARY TO END ENTRY"
\(150 \mathrm{~K}=0\)
\(160 \quad 1=1\)
170 INPIIT A \(\ddagger(1), B(, 1)\)
180 IF \(B(1)=-1\) THEN 240
\(190 K=K+B(1)\)
\(200 』=\rfloor+1\)
210 GOTO 170
240 - \(=1-1\)
250 FFINT "TOTAL COMFENSATION = ":K
260 FRINT "15\% LIMITATION = "; FN R(K * 0.15)
270 FRINT "F/E \% GONTRIBLITION AS A LIECIMAL = ";
\(2 B 0\) INFUT M
290 IF M \(>1\) OF \(M<=0\) THEN 270
300 FRINT "IS FLAN INTEGRATED? ( \(Y / N\) )";
310 INFUT Y多
320 IF \(\gamma=\$=\) "N" THEN 640
```

```
30 IF Y* < > "Y" THEN 300
360 FRINT "INTEGRATIGN LEVEL = "
370 INFUIT L
9% FRINT "INTEGRATION % AS A DECIMAL = ";
400 INFUIT F
420 s = 0
430 H = 0
439 FEM GALCILATE INTEGRATEI FORTION FOR EACH EMFLOYEE
440 FOR I = 1 TO .l
450 IF E(I) > L THEN 460
453 E(I) = 0
456 GOTG 490
460 E(I) = FNF(F* (B(I) - L))
470 S=S + 1
480 H=H+C(I)
4%0 NEXT I
500 IF H < M * K THEN 650
510 IF H > M * K THEN 52O
512 FOR I = 1 TG .l
5 1 4 ~ D ( I ) ~ = ~ 0 ~ 0
5 1 6 ~ N E X T ~ I ~
518 GIOTO 760
520 Fi =0
50 T = 0
5 9 \% ~ F E M ~ F E D I L E ~ I N T E G F A T E L ~ A M O U N T ~ T G ~ T O T A L ~ G O N T F I B I I T I O N ~
540 FOR I = 1 TO .1
5 5 0 ~ I F ~ [ . ~ I ~ ) ~ = ~ 0 ~ T H E N ~ 6 2 0 ~
560 T = T + 1
5 7 0 ~ I F ~ T ~ = ~ 5 ~ T H E N ~ 6 1 0 ~
SOOC(I)=FNR(I(I) *M*N/H)
590 Fi=Fi + E(I)
600 GOTO 620
\epsilon10G(I)=M*K-F
620 NEXT I
6%O GOTG 760
6 4 0 ~ H = 0
642 FOF I = 1 TO.l
644 I(I) = 0
646 NEXT I
650 G=M - H/K
6% REM GALQULATE NON-INTEGRATEI FGRTION
670 FOR I = 1 TO .I
6% [I(I) = FN Fi(B(I) * Gi)
720 NEXT I
760 Q = 0
770 x = 0
7EO FRINT " INTEGRATEI NON-INTEG."
7% FRINT "NAME SALAFY FORTION FORTION TOTAL"
799 REM FRINT OUTT FESULLTS
BOO FOR I = 1 TO .l
820x=X+G(I)+LI(I)
830 Q = Q + L(I)
E40 FFTNT A$(I): TAB( 11);B(I): TAB( 1E);C(I): TAB( 2E);
845 FRINT [(I): TAB( 36):I(I) + LI(I)
ESO NEXT I
```

```
855 FOFINT
#60 FFFINT "TGTALS"; TAE( 11):ド; TAE( 1S);
870 IF H % = M * F THEN 900
EGO FFIINT H; TAE( 2S)
80 G0TM 610
OO FFIINT M * ド; TAB( 2G)
G10 FRINT E; TAE( \Xi&);X
FO FFINT
GO FFINT "WANT IIFFEFENT \XiALAFIES% (Y/N) ";
940 INFIIT Z$
FEO IF Z安 = "Y" THEN 120
%O FFINT "MIFFEFENT EONTFIEIITIGN% (Y/N) "%
970 INFIIT Z$
9%0 IF Zक= "Y" THEN 270
990 FFINT "EHANGE WHETHEF INTEGFATELO (Y/N) "%
1010 INFUIT Z$
1020 IF Z$ = "Y" THEN 300
10\Xi0 FFINT "[IFFEFENT INTELRATIDN LEVEL?' (Y/N) ";
1040 INFUTT Zक
1050 IF Z$ = "Y" THEN 300
10GO FFFINT "IIFFEFENT INTEGFATIIN %%(Y/N) ";
1070 INFUIT Z韦
10E0 IF Z末 = "Y" THEN S%0
10% ENII
```


Reference

U．S．Internal Revenue Service Code，Sections 401－04．

Checkbook Reconciliation

This program can remove a considerable burden from you each time you reconcile your checking account. Since the computer performs all of the addition and subtraction, the chance for errors to occur is greatly reduced.

You must enter the ending balance from your statement, then each deposit or credit made since the statement date. After you have entered all outstanding deposits and credits, enter zero. This signals the program to continue to the next section, entry of outstanding checks. Enter check and other debit amounts as you did for deposits, and enter zero when all outstanding checks and debits have been entered.

You should enter only positive dollar amounts for each response. The exception is that you may enter negative amounts for your previous balance and your checkbook balance.

If your account won't balance, check all of your entries to make sure they are complete and correct. Do your check register entries match the amounts on the cancelled checks? Have you entered all checks, deposits, and automatic debits and credits? If you can't find any mistakes, call your bank.

Example

Janet's checking account statement does not show the $\$ 600.00$ paycheck she deposited yesterday. She also wrote two checks that aren't shown either, one for $\$ 87.32$, and one for $\$ 250.00$. If the ending balance from the statement is $\$ 348.55$, Janet's check register shows a balance of $\$ 614.54$, and service charges on the statement are $\$ 3.31$, what is her adjusted account balance? Is Janet's account balanced?

Answer: Janet's adjusted balance is $\$ 611.23$. Her account is balanced.
EHECEBOOS REGONGILIATION
WHAT IS THE ENIING BAL ANIEE
FFOM THE STATEMENT ? BAE .55

```
ENTER THE AMOUNT OF EACH DEFISIT
NOT EHOWN ON THE STATEMENT
(ENTER ZERO WHEN ALL GUTSTANGING
DEFOSITS ARE ENTEREO)
700
O
ENTER THE AMOUINT OF EACH OHELK
NOT SHOWN ON THE STATEMENT
(ENTER ZERO WHEN ALL DUTSTANDING
CHECKS ARE ENTERED)
77.82
7250
%0
```

ACLOLINT BALANCE $=\$ 611.23$
ENTER YOUR CHECKBGOK BALANCE 9614.54
ENTEF THE AMOUNT OF SERVICE LHAFGES $? \Xi .31$

```
WOULD YOU LIKE TQ FE-FUNN THIS FROOFAM
WITH NEW LIATA? (Y/N) ON
```


Practice Problems

1. Ending balance is $\$ 352.13$. Not shown on the statement are three deposits of $\$ 100.00$ each, and six checks amounting to $\$ 159.21, \$ 25.00, \$ 14.75, \$ 29.54, \$ 45.67$, and $\$ 22.50$. What is the account balance? The checkbook balance is $\$ 358.97$. Service charges on this statement are $\$ 3.51$. What is the adjusted account balance? Does the account balance?

Answer: The account balance is $\$ 355.46$. The adjusted account balance is $\$ 355.46$. Yes, the account does balance.
2. Ending balance is $-\$ 17.39$. One deposit of $\$ 250.00$ is outstanding, as are three checks: $\$ 50.00$, $\$ 25.00$, and $\$ 12.98$. A pre-authorized withdrawal of $\$ 35.00$ also has occurred, but is not shown on this statement. What is the account balance? If the checkbook balance is $\$ 118.99$, and service charges are $\$ 9.36$, what is the adjusted account balance? Is the account balanced?

Answer: The account balance is $\$ 109.63$. The adjusted account balance is $\$ 109.63$. Yes, the account is balanced.

Program Listing

```
10 FRINT "CHEOKBOOK FECONCILIATION"
20 REM - FUNOTION TG DETEFMINE IF FOSITIVE
25 FEM - LOLLAF AMOUNT WAS ENTEFED
30 DEF FN B (X) = INT (X * 100 + 0.5) / 100 * SGN (X)
40 FFIINT
5 0 ~ F F I N T ~ " W H A T ~ I S ~ T H E ~ E N U I N G ~ E A L A N C E " ~
5 5 ~ F R I N T ~ " F F O M ~ T H E ~ S T A T E M E N T ~ " ;
GO INFUT E
70 REM - EFEGIAL TEST FOR VALID INFUIT
75 FEM - (NEGATIVE NUMEER ALLOWED)
77 X = E * 100
80 IF X = INT (X) THEN 120
90 FEM - INVALID AMOLINT. IISFLAY ERROR,
95 REM - LOOP TO RE-ENTER
100 GOGUB 68O
110 GOTO 50
120 FFINT
130 FRINT "ENTEF THE AMOUNT OF EACH DEFOSIT"
135 FFINT "NOT SHOWN ON THE STATEMENT"
140 FFINT "(ENTEF ZEFO WHEN ALL DUTSTANLING"
145 FRINT "DEFOSITS ARE ENTEREII"
150 II = O
160 INFUIT A
170 REM - ALL DEFOSITS ENTERED?
180 IF A = O THEN 260
190 FEM - NO, TEST FOR VALID ENTRY
200 IF ( FN B(A) = A) THEN 240
210 FEM - INVALID, FRINT ETANLIARI ERFIOR,
215 FEM - LOOP TO FE-ENTER
220 GOGUE 720
230 GIOTO 160
240 II = II + A
```

```
250 GOTG 160
260 FRINT
270 FRINT "ENTER THE AMOUNT DF EACH CHECK""
275 FFINT "NOT SHOWN ON THE STATEMENT"
2G0 FFIINT "(ENTEF: ZEFOO WHEN ALL DUTSTANLING "
2GS FRINT "CHECKS AFE ENTEREII"
290 [- = 0
300 INFUIT A
310 FEM - ALL OUISTANLING CHECKS ENTEFEEI?
320 IF A = O THEN 400
3O FEEM - NO, TEST FOR VALIII ENTRY
340 IF ( FN B(A) = A) THEN 380
S50 FEM - INVALID, FFINT STANDAFII EFFIOR,
355 REM - LOOF TO RE-ENTER
360 Gח8UB 720
370 EMTTO 300
B0 E = C + A
390 GOTO 300
4 0 0 ~ F R I N T ~
405 Y = INT ((E + [ - E) * 100 + 0.5) / 100
410 FRINT "ACCOUNT BALANLE = 婁;Y
4 2 0 ~ F F I N T
4SO FRINT "ENTER YOURF CHELKEOONE BALANCE ";
4 4 0 ~ I N F I I T ~ E ~
45O FFINT "ENTER THE AMOUNT OF SERVICE IHARGES ";
460 INFUTT S
470 FEM - TEST FOR VALIII ENTRY
4BO IF FN B(E) = S THEN 520
4%% FEM - INVALID, FRINT ETANDARD EFFOR,
4%5 REM - LOOF TO FE-ENTER
500 GOSUB 720
5 1 0 ~ G O T O ~ 4 5 0 ~
5 2 0 ~ F F I N N T
525 X = INT ((B - 5) * 100 + 0.5) / 100
530 FRINT "AL|IUSTEL ALCOUNT BALANCE = 串;X
540 IF Y = X THEN 620
5 5 0 ~ F R I N T
560 FFIINT "YOUR ACOOUNT IS IUIT OF BALANCE."
5 7 0 ~ F R I N T ~ " M A K E ~ S U R E ~ Y O U ~ H A V E ~ I N C L U D E D " ~
575 FRINT "ALL TFANEAGTIONE AGAINST THIS ACCOUNT,"
5SO FRINT "INCLIDING AUTGMATIE DEFOSITS ANL"
590 FFINT "INTEFEGT FAYMENTS, AS WELL AS"
5%5 FRINT "FRE-AUITHORIZED WITHDRAWALS."
600 FRINT
610 FEM
620 FFIINT
630 FRINT "WOULD YOU LIKE TO FE-RUIN THIS FROGRAM"
635 FRINT "WITH NEW LATA? (Y/N) ";
640 INFUTT Z$
650 IF Z$ = "Y" THEN 40
660 IF Z$ = "N" THEN 760
670 GOTO 630
6BO FFINT
6%0 FRINT "ERROR: ENTER A VALII [IOLLAF; AMDINT ONLY"
700 FFINT
```

710 FETIIFN
720 FRINT
750 FRIINT "EFFiOF: ENTEF A FOSITIVE"
735 FRINT " [MLLAR AMOUNT ONLY"
740 FRINT
750 FETURN
760 ENII

Home Budgeting

This program sets up a cash budget for personal use, allowing for a variety of expenses which can occur at many different times. Once you enter the income and expense information which the program requests, day-by-day details of income and expenses print as they occur. The program also allows you to use credit cards as a means of paying expenses when the cash you have is insufficient to meet your obligations. Or, if you wish, you can delay them until the next time they come up.

To use the program, enter the date where the budget will begin. The program then guides you through a series of entries, starting with net income(s), followed by secured loans, credit cards and, finally, normal living expenses. If your budget does not include items which the programs asks for, just enter zero for those items. The program will then skip to the next budget item.

Whenever you have a budget item to enter, you will have to enter its periodic amount, how often it occurs, and when it will occur next. The exceptions to this are secured loans and credit cards, which ask for more information. The periodic amount is the amount you regularly receive as income, or pay as an expense. When you enter how often the budget item occurs, it must be an integer from 1 to 99 , inclusive. This number tells the program how many times per year the item occurs ($1=$ yearly, $2=$ semiannually, $4=$ quarterly, $6=$ bimonthly, $12=$ monthly, $24=$ semimonthly, $26=$ biweekly, and 52 = weekly).

If the next date for the budget item happens to be the same as the budget start date, enter zero. Otherwise, enter the next date as one number (for example, $91580=$ Sept. 15, 1980). You can enter a date months or even years after the budget start date if you like. When the program performs its cash flow analysis, it will 'activate"' future income or expenses when it reaches the date you specify.

With secured loans, you have to enter the remaining balance of the loan as well as the periodic amount, frequency and next date. When you enter credit card information, you will input the annual percentage rate for the card, the remaining balance, and its authorized credit limit. The program automatically calculates the number and amount of remaining payments for each credit card, and displays them. If you want to change the payment which the program calculates, just specify a new periodic payment of a higher or lower amount. Note: the program will calculate an even stream of payments to make budgeting more predictable. When the remaining balance of the credit card goes below the calculated payment amount during the cash flow analysis, only the remaining balance is paid.

Once you have entered all of the budget items, the program will ask how much cash you have on hand. Enter this amount, and the program will begin its cash flow analysis. At the end of each month's detail, total cash inflows and outflows are printed. At this point, you can choose to go to the next month's analysis or stop the program.

Because you will be entering a significant amount of data in order to run this program, you should know how to correct data entry errors. You can only correct errors which you make on the current budget item (that is, you cannot backtrack to the fifth item when you are on the tenth).

On a current budget item, you can move as far back as the periodic amount entry by entering -1 . For example, you notice that you have entered the wrong periodic amount for salary 1 , and the program now wants you to enter the next date for this item. Rather than entering the next date for salary 1 , enter -1 . The computer will accept this entry and then ask you to enter the periodic amount for salary 1 again.

Program Notes

Home budgeting/cash flow allows for a maximum of 3 incomes, 3 loans, 5 credit cards and 25 expense items. At present, the program will allocate cash to loans first, then credit cards, and finally other expenses. The expenses are arranged in descending order of importance (that is, if a loan, charge card and restaurant expense all appear on the same day, the program will allocate cash to the loan first and to the resturant expense last).

Changing this program to allow for more budget items is a three-step process. First, change line 20, substituting the terms $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D in parentheses with actual numbers. These items are explained below.

$$
\begin{aligned}
& 20 \text { DIM D }(12), \mathrm{IO}(\mathrm{~A}, 2), \mathrm{CO}(\mathrm{~B}, 3), \mathrm{C} 1(\mathrm{C}, 5), \mathrm{C} 1 \$(\mathrm{C}), \mathrm{E} 0(\mathrm{D}, 2) \\
& \mathrm{A}=\text { Maximum number of incomes } \\
& \mathrm{B}=\text { Maximum number of secured loans } \\
& \mathrm{C}=\text { Maximum number of charge cards } \\
& \mathrm{D}=\text { Maximum number of expense items }
\end{aligned}
$$

The second step is to put descriptions of the extra budget items in the DATA statements at the beginning of the program. You can add any extra loans by placing DATA statements between lines 90 and 100 which contain descriptions of the loans. Note: you do not need to change DATA statements to allow for more incomes or more credit cards. To add more expenses, add DATA statements anywhere from lines 110 through 180.

The third and last step is to change FOR/NEXT loops in the program. If you change the number of secured loans, be sure to also change lines 530 and 1080 of the program. Currently they are set for three iterations. Change the number 3 in these two statements to the new number of secured loans. If you have added or eliminated expense items, you will need to change lines 750 and 1360 . Change the number 25 in these two statements to the new number of expense items.

Example

```
HMME EUIIGETINE/EASH FLOW MGMEL
IATE TI STAFT ANALYSIS FFOMM:
ENTEF MONTH-DAY-YEAF (MMIIDYY) ?90180 Start analysis on Sept. 1, 1980.
```

$-\cdots-\cdots-\cdots E T$ - $-\cdots$ AFAY $1 \cdots-\cdots-\cdots$
PEFIULII: AIICIINT FOR INCIME 7512
HOW MANY TIMES FER YEAR 726
ENTEF MDNTH-LAY-YEAR (IMLILYY) 790580

- $-\cdots$ NET SALAFY $2-\cdots$
FEFIIIII: AMOUNT FIF INEIME $\because O O$
HOW MANY TIMES PEF YEAF $\because 4$
ENTEF MONTH-LAY-YEAF (MMLDYY) $\because 1001 E O$

FEFTILIC: AMOIINT FOF TNCOME ?O

First net income is $\$ 512.00$, paid biweekly. The next paycheck will be on Sept. 5, 1980.

Finish entering income data.

FEFIDDIE AMGUNT FOR MORTGAGE OO
PERIOLIC AMOUNT FOR CAF LOAN TBO
HOW MANY TIMES FER YEAR 312
ENTER MONTH-DAY-YEAR (MMDDYY) ?-1
CURFENT BALANCE -1
FERIODIC AMOUNT FOF CAR LIAN ?-1

Car loan payment was incorrect. - 1 entry used to back up to the incorrect entry.

FERIODIG AMOUNT FOR GAR LOAN T9E
HOW MANY TIMES FER YEAR 712
ENTER MONTH-DAY-YEAF (MMDDYY) 91580
GURFENT BALANCE ?1290

```
NAME OF CFEDIT CARD 1(FETURN TO END)
TVISA
ANNUAL INTEFEST RATE ?IG
CURRENT BALANCE 7525
EREDIT LIMIT ?100
12 FAYMENTS OF $52.5
NEEDED TG FAY LIEET
CHANGE AMDUNT (Y/N) FY
ENTER DESIRED FAYMENT AMOUNT ?S5
19 FAYMENTS OF $3S
NEEDEI TO FAY DEET
CHANGE AMOUNT (Y/N) TN
ENTEF NEXT UISA BILLING DATE:
ENTER MONTH-DAY-YEAF (MMLIGYY) %92OEO
NAME OF GFEDIT GARD Z(FETIURN TO ENLI)
MASTERCHAFIGE
ANNIIAL INTEFEST FATE ?IE
CIFRENT BALANLE %2SO
EREIIT LIMIT FSOO
12 FAYMENTS OF केS
NEEDEL TG FAY DEBT
EHANGE AMOUNT (Y/N) ON
ENTEF NEXT MASTEFTHAFGE BILLING [IATE:
ENTEF MONTH-DAY-YEAR (MMDDYY) ?92480
NAME OF EFEDIT CARD S(RETURN TO END)
```

```
```

FERIODIE AMOUNT FOR FROFERTY TAX %O

```
```

FERIODIE AMOUNT FOR FROFERTY TAX %O
FEFIODIC: AMDUNT FOR RENT FOO
FEFIODIC: AMDUNT FOR RENT FOO
HOW MANY TIMES FEF YEAF ?12
HOW MANY TIMES FEF YEAF ?12
ENTER MONTH-DAY-YEAR (MMDDYY) OOO1EO
ENTER MONTH-DAY-YEAR (MMDDYY) OOO1EO
FERIDOIE ANOUNT FOR: LIFE INGUFANLE ?12.5
FERIDOIE ANOUNT FOR: LIFE INGUFANLE ?12.5
HOW HANY TIMES PER YEAR %Iz
HOW HANY TIMES PER YEAR %Iz
ENTER MONTH-DAY-YEAF: (MMDINYY) ?924EO
ENTER MONTH-DAY-YEAF: (MMDINYY) ?924EO
FERIODIL AMOUNT FOF HOUSE INGLRANEE OO
FERIODIL AMOUNT FOF HOUSE INGLRANEE OO
FERIODIE: AMOUNT FOR GAR INSURANCE }212
FERIODIE: AMOUNT FOR GAR INSURANCE }212
HOW MANY TIMES FEF YEAF ?4
HOW MANY TIMES FEF YEAF ?4
ENTEF MONTH-DAY-YEAFi (MMDDYY) ?102180
ENTEF MONTH-DAY-YEAFi (MMDDYY) ?102180
FEFIODIL AMOUNT FOF TELEFHONE OS
FEFIODIL AMOUNT FOF TELEFHONE OS
HOW MANY TIMES FEF YEAR TIZ
HOW MANY TIMES FEF YEAR TIZ
ENTER MONTH-DAY-YEAR (MMDDYY) ?OOSEO
ENTER MONTH-DAY-YEAR (MMDDYY) ?OOSEO
FEFIODIE AMOUNT FOR GAS \& ELEETRIG ?17
FEFIODIE AMOUNT FOR GAS \& ELEETRIG ?17
HOW MANY TIMES FER YEAR TIL
HOW MANY TIMES FER YEAR TIL
ENTER MONTH-DAY-YEAR (MMULYY) %o1SEO

```
```

ENTER MONTH-DAY-YEAR (MMULYY) %o1SEO

```
```

Enter credit card 1.
Note: calculation of payments allows for interest over 12 payments.

Payment was changed to a lower amount.

```
FEFIGIIE: AMIUNT FIF WATEF FO
FEFIOLIE AMIINNT FGR TRASH FIEFIFF OO
FERIODIL: AMIUNT FOF GFILEFIES ?25
HDW MANY TIMES FER YEAF ?S2
ENTER MLNTH-DAY-YEAF (MMDIYY) ?905EO
FEFIGIIE AMINNT FGF ELOTHING %4O
HOW MANY TIMES FER YEAF }\because
ENTEFI MONTH-[IAY-YEAFi (MINLIYY) F11O1EO
FEFIOLIE: AMGUNT FDF FHYSIEIAN T3O
HOW HANY TIMES FEF: YEAF ?4
ENTEF: MONTH-DAY-YEAF (MMLIYY) ?1ZO1EO
FEFIGLII: AMOUNT FOF LIENTIST OO
FEFIGIIE AMMUNT FGF LFULSO OO
FEFIGIIE: AMOILNT FUF TUITIGN OO
FEFIGIIIG AMGINT FGF EHILI EAFE OO
FEFIGDIE AMGNNT FOF GAS/EIL OIS
HOW MANY TINES FEFZ YEAR OS
ENTEF MONTH-LIAY-YEAF (MMIINYY) TGOGEO
FEFIIDIL: AMOUNT FOR AUTO FEFAIF 
HOW HANY TIMES FEF YEAF ?S
Expense occurs every 4 months.
ENTEF MONTH-LIAY-YEAR (MMLIDIYY) ?101E1
FEFIGIIE: AMGINT FGFF EGMMUTING OO
FEFIOIII: AMIINT FIF MEIIEAL FLAN OO
FEFIGIII: AFIUNT FIFi HOME FEFAIFi OO
FEFIOIIIL AMLUNT FOF RESTAURANTS 715
HOW MANY TIMES FEF YEAR ?52
ENTEF: MLNTH-DAY-YEAF (MMDDYY) ?O
FEFIULIE: AMOUNT FGF MOUIES/EMNOEFTS ?10
HOW MANY TIMES PER YEAR %%G
ENTEF: MINTH-[AY-YEAF: (MMLIYY) OO
FEFTUIIE AMGINT FIF SUESURIFTIGNS OO
FEFIUIII: ANOUNT FGF MISGELLANEGIS FIS
HOW MANY TIMES FER YEAR ?S2
ENTEF MLNTH-DIAY-YEAR (MMLIDYY) ?91580
ENTER CASH ON HAND }740
```

Weekly expense.

```
FERIOLIC AMOUNT FQR CLOTHING 740
HOW MANY TIMES FER YEAR 74
ENTEF MONTH-DAY-YEAF (MMDIYY) T1101EO
FEFIODTE AMOUNT FOF FHYSILIAN 30
HOW HANY TIMES FER YEAR ?4
ENTEF MONTH-DAY-YEAR (MMDIYY) 120180
FEFIOLIG AMOUNT FOR DENTIET OO
FEFIOMIE AMOUNT FQR DRUGS 70
FEFIOIIE AMOUNT FOR TUITION ?O
FERIOIIG AMOUNT FOR EHILI EARE TO
FERIOLIC AMOUNT FOF GAS/OIL 75
HOW MANY TIMES FEF YEAR ?S2
ENTEF MONTH-DAY-YEAF (MMLIYY) \(冖 9 O 6 E O\)
PEFIODIC AMOUNT FOR AUTO REFAIR 340
HOW HANY TIMES FER YEAR \(? 3\)
Expense occurs every 4 months.
ENTER MONTH-DAY-YEAR (MMLDYY) ?10181
FEFIDIIG AMOUNT FOR GOMMUTING ?O
FERIOMIE AMOUNT FOR MEDICAL FLAN TO
FEFIOLIE AHOUNT FOR HOME FEFAIF ?O
FERIOLIC AMOUNT FOR RESTAURANTS ?15
HOW MANY TIMES FER YEAR 352
ENTEF MONTH-DAY-YEAR (MMDLYY) ?O
FERIOLIE AMOUNT FOR MOVIES/GONGERTS 710
HOW MANY TIMES PER YEAR \(\% 26\)
ENTER MONTH-DAY-YEAR (MMDDYY) OO
FEFTODIG AMOUNT FOR GUESGRIFTIONS TO
FEFIONIC AMOUNT FOF MISCELLANEOUE ?IE
HOW MANY TIMES FER YEAR ?S2
ENTER MONTH-LIAY-YEAR (MMDDYY) ?91580
ENTER CASH ON HAND 3400
```

Next date for this item is the same as the budget start date.
IASH FLIWS FIF $\because / E O$
IFENINIG IASH EALANIE $\$ 400$

FRI 19 INIOME 1
FFiI 19 GFOIOEFIEG - -
$\Xi A T$ OO VISA -
EAT こO GAS/OIL -15
MON 2 FESTAIIFANTE - -15
MON Z2 MISLELLANEDIIS -1E
WEI 24 MASTEFIHAFIGE - 2
WEII 24 LIFE INSIIFANIE -12.5
FFI 26 GFOLEFIES -2E
EAT 27 GAG/OIL -15

MON 29 FESTAUFANTS - -15
MON $\because \quad$ MOVIES/EOMIEFTS - -10
MON 2G MISEELLANEDUS -1E CASH IN:1024 CASH OLIT: E36.5

Total monthly cash income and expenses.

[10 YOU (Y/N) ?	WANT TO EEE THE NEXT	
WASH FL	OWS FOR 10/E0	
OFENING	CASH EALANLE \$5E7.5	
WED 1	INCOME 2100	
WEII 1	RENT	-300
THU 2	INCOME 1 512	
THU 2	GFOLEETES	-25
FFil 3	GAS/OIL	-15
SUN 5	FESTAURANTS	-15
EliN 5-	MIGEELAMEOUS	-13
WED 8	TELEFHONE	-35
THII 9	GROCEFIES	-25
FRI 10	GAS/OIL	-15
Sun 12	FESTAUFANTS	-15
Sun 12	MOVIES/LONCERTS	-10
Sun 12	MISCELLANEDUS	-1E
WEI 15	CAR LOAN FAYMENT	-95
THII 16	INCOME 1 E12	
THU16	GROLERIES	-25
FFII 17	GAG/OIL	-15
SAT 1S	GAS \% ELELTRIE	-17
Elin 19	FESTAUFANTS	-15

SUN		MISCELLANEOUS		-18
MON	20	VISA		-35
TUE	21	CAR InsIfinice		-125
THUI	23	GROCEFIES		-25
FRI	24	MASTERCHARGE		-23
FRI	24	LIFE INSURANCE		-12.
FFII	24	GAS/DIL		-15
Ell	26	RESTAIIRANTS		-15
SUN	26	MOVIES/CONCERTS		-10
EINN	26	MISCELLANEOUS		-18
THUI	30	INCOME 1	512	
THII	30	BROCERIES		-25
FRI	31	GAS/OIL		-15
		CASH IN: 1636	CASH	OUT:
nIO YOU WANT TO EEE THE NEXT MONTH (Y/N) γY				
CASH	- FL	OWS FOR 11/80		
OFEN	ING:	CASH BALANCE $\$ 1229$		
EAT	1	FENT		-300
SAT	1	Clothing		-40
SUN	2	FESTAURANTS		-15
SIN	2	MISCELLANEOUS		-15
THII	6	GRICERIES		-25
FRI	7	GAS/OIL		-15
EAT	E	TELEFHONE		-35
SUN	9	RESTAURANTS		-15
OUN	9	MOUIESICONCERTS		-10
SIIN	7	MISCELLANEOUS		-13
THU	13	INCOME 1	512	
THUI	13	GROLERIES		-25
FRI	14	GAS/GIL		-15
SAT	15	EAR LIAN PAYMENT		-95
SUN	16	FESTAURANTS		-15
SLIN	16	MISCELLANEOUS		-15
TUE	18	GAS \% ELECTRIC		-17
THU	20	VISA		-35
THIL	20	GROCERIES		-25
FRI	21	GAS/OIL		-15
ELIN	23	FESTAURANTS		-15
SUN	23	MOUIES/CONOERTS		-10
SUN	29	MISCELLANEOUS		-13
MON	24	MASTEFCHARGE		-23
MON	24	Life ingligance		-12.
THUI	27	INCOME 1	512	
THUI	27	GFOCEFIES		-25
FRI	28	GAS/OIL		-15
EUN	30	FESTALIRANTS		-15
Sun	30	MISCELLANEOUS		-18
		EASH IN: 1024	CASH	OUT:

SUN 1E	GAS \& ELECTRIC	-17
SUN 1E	FESTAURIANTS	-15
SUN 18	MOVIES/CONOERTS	-10
SuN 18	MISCELLANEOUS	-18
TUE 20	VISA	-35
WEL 21	CAR INSURANEE	-125
THO1 22	INCOME 1	512
THO 22	GRODEFIES	-25
FRI 23	GAS/DIL	-15
SAT 24	MASTEFICHARIE	-23
SAT 24	LIFE INGURANOE	-12.5
Sun 25	FESTAURANTS	-15
$\operatorname{SIN} 25$	MISCELLANEOUS	-18
THU 29	GROLERIES	-25
FRI 30	GAS/OIL	-15
	CASH IN: 1124	CASH DIIT: 1034. 5

[O YOU WANT TG SEE THE NEXT MONTH
(Y/N) ?Y
CASH FLOWS FOR 2/81
OFENING EASH BALANOE $\$ 1604.5$

EUN 1	FENT	-300
SUN 1	CLOTHING	-40
Sun 1	FESTAURANTS	-15
Sun 1	MOUIES/CONCERTS	-10
Sun 1	MISEELLANEOUS	-18
THII 5	INCOME 1	512
THII 5	GROLEFIES	-25
FFI 6	GAS/OIL	-15
SUN E	TELEFHONE	-35
SUN 8	RESTAURANTS	-15
Slin E	MISCELLANEOUS	-18
THU1 12	GROCERIES	-25
FFII 13	GAS/GIL	-15
SUN 15	EAR LOAN FAYMENT	-95
SUN 15	FESTAIIRANTS	-15
SLN 15	MOUIES/CONCERTS	-10
EUN 15	MISEELLANEOUS	-19
WED 13	GAS \& ELECTRII:	-17
THU 19	INCOME 1	512
THU 19	GROLERIES	-25
FRI 20	VISA	-85
FRI 20	GAS/OIL	-15
SIN 22	RESTAURANTS	-15
Sun 22	MISCELLANEOUS	-18
TUE 24	MASTEFICHARGE	-23
TUE 24	LIFE INGURANCE	-12.5
THOI 26	GROCERIES	-25
FRI 27	GAS/OIL	-15
	CASH IN: 1024	EASH OUIT: EGO

THU 16	INCOME 1	512
THU 16	GROMERIES	-25
FRI 17	GAS/OIL	-15
SAT 18	GAS \& ELEITRIC	-17
SUN 19	RESTAURANTS	-15
SuN 19	MISCELLANEOUS	-18
MON 20	VISA	-35
TUE 21	CAR INSIIRANIE	-125
THU1 23	GRICERIES	-25
FRI 24	MASTEFCHARGE	-23
FFil 24	LIFE INELIAANCE	-12.5
FRI 24	GAS/OIL	-15
SUN 26	FESTAURANTS	-15
Sun 26	MOVIES/CONGEFTS	-10
Sun 26	MISEELLANEOUS	-18
THU 30	INCOME 1	512
THU 30	GROCEFIES	-25
	CASH IN: 1636	CASH DUIT:979.5

nIO YOU WANT TO EEE THE NEXT MONTH
(Y/N) ?N

Program Listing

10 FEM HOME EUIGETING/EAEH FLOW ANALYSIS

30 REM [I() - LIAY OFFSET FADTORS
40 FEM IO() --SALARIED INCOME
50 REM G1() -GREDIT INETFIUMENTS
60 REM EO() --EXFENSES
70 FEM C1\$() - DEEGRIFTIGNS OF ERELIT CARLS
EO REM CO() --FIXED-TERM LOANS
90 LIATA "MORTGAGE", "CAF LQAN","OTHER LOAN"
100 REM EXFENSES
110 LATA "FFGFERTY TAX", "RENT"
120 DATA "LIFE INSIRANIEE", "HDUSE INGUFANCE", "CAR INEURANLE"
130 DATA "TELEFHONE", "GAS \& ELECTRIC","WATER","TRASH FIEKUF"
140 DATA "GROCERTES", "ELOTHING", "FHYSIEIAN", "DENTIST"
150 DATA "DFUGE","TUITION", "CHILI CARE","GAS/GIL"
160 DATA "AlITG REPAIR", "COMMUTING","MEDICAL FLAN"
170 DATA "HOME REFAIF", "RESTALIRANTS", "MOUIES/EONOERTS"
180 DATA "SUESCRIFTIONS", "MIGCELLANEOUS"
$190[1(1)=31$
$200 \mathrm{D}(2)=28$
$210[1(3)=31$
$220 \mathrm{~L}(4)=30$
$230[(5)=31$
240 ח(6) $=30$
$250[1(7)=31$
260 [1(3) $=31$
$270[(9)=31$
$280 \mathrm{D}(10)=31$
$290[(11)=30$

```
300 [1(12)=31
Z10 [禾 = "\XiATELINMחNTLIEWELITHIIFFI"
ZOOFFINT "HDME EULIGETINEI/EASH FLGW MODEL"
30 FFINT
\Xi40 FFINT "IATE TG STAFT ANALY\XiIS FFMMM: "
350 EIMSIE 2900
#O ח1 = [%
30 Y1 = Y
30 M1 = M
7%0 114 = Y*10000 + M * 100 + [2%
400 FFINT
410 FEM ENTEFI INE:IMES--AMOINTS & FFEEIIENE:Y
420 I2 = 0
430 Xक = "INEOME
```



```
450 EMSIB 2560
460 IF AZ(1)=0 THEN 510
470 I2 = I2+1
4\XiOIO(I2,1)=AZ(1)
490 IO(IZ,Z)=A2(2)
500 GIOTO 440
E10 FRINT
52O FEM ENTEF SETUFELI LDANE
50 FOR I = 1 TO S
540 FEAII X$
550 FFINT
560 TMGIIE 2S60
570 IF AV(1)=0 THEN 640
500 IF AZ(1) < O THEN 550
500 EO(I,1)=A2(1)
GOO LO(I,2) = AZ(2)
L10 FRINT "GUIFFENT EALAANLEE ";
OO INFUIT EO(I, S)
60 IF OO(I,3) & 1 THEN SOO
640 NEXT I
GO FEM ENTEFI EFELIIT LAFIIS ANLI DESIGFIFTIUNS
OOO FEM MONTHLY FAYMENTS ARE ASSIMMEI
670 FIFINT
680 k = 1
690 TIGIUE 2O2O
700 IF I1$(&゙) < = " "THEN 730
710ド= =* + 1
720 EIOTO 600
7:01:4=K゙-1
740 FEM ENTER EXFENSES
750 FORFK゙=1 TOTE
760 FFIINT
770 FiEALI X*
780 GIGILE OS6O
790 EO(ド,1)=A2(1)
B00 EO(K゙,Z)=A2(2)
E10 NEXT ド
E2O FEEM INFUIT FFEEENT EASH FIEEEFVES
SSO FRINT "ENTEF EASH INN HAND ";
840 INFUIT EO
```

```
850
    FEM EEGIN ANALYSIS
86O FIFINT
O70 FFIINT "EASH FLOWE FOFF ":M1;"/";Y1
SEO FRINT "GFENINE EASH EALANIEE *";EO
EOE E1=0
90 I1=0
70 FOR K゙1= M1 TO M(M1)
FOO RESTORE
FO FOF ,I = 1 TOIT
70 REM EHENKK FOF INEONE
%O}\mathrm{ IF INT (IO(,1,2)) % [14 THEN 1060
OOBO}=EO+IO(,1,1
70 I1 = I1 + IO(,1,1)
90M M=M1
990 [2= ח1 
1000 Y = Y1
1010 [1: = INT ((IO(.1,2) - INT (IO(.1,2)))* 100 + 0.5)
1020 A2(1)= [13 / 100
10%0 TIGSUE Z5NO
1040 10(,Nz)=A2(1) + Y * 10000 + M * 100 + [2
```



```
1060 NEXT ..I
1070 FEM EALEIILATE DIITFLIWS FGF FIXELI-TEFIM LIANE
10EO FOR ,I = T TO 
1090 FEADI X$
1100 IF IO(,|,#)=0 GR INT (10(,1,2)) > [14 THEN 1200
1120 IF EO(,1,3) % EO(,1,1) THEN 1140
11S0 [O(,1,1)= EO(,1,Z)
1140 A2(1)= EO(,1,1)
1150 Aご(2)= EO(,|,こ)
1160 GIEUE 1700
1170 [O(,1,2)=(00(,1,2)- INT (00(.1,2))) + Y * 10000 +M # 100 + M2
1180 FFIINT A*;" ";D1; TAE( %);X家;" FAYMENT"; TAB( 30); - 1 * A2(1)
11%OLO(,1,3)= OO(,1,B)-AZ(1)
1200 NEXT .1
1210 FEM GALEIILATE GUITFLIWE FOR EHAFIEE EAFLIS
122O FDF , = = TEI E.4
```



```
120 IF [1(,1,2) % [1(.1,4) THEN 1270
1260 [1(1,4)= [1(,1,2)
1270 A2(1)= E1(,1,4)
1200 A2(2)= E1(.15) + 0.12
1290 X = = 1:1$(.1)
1500 GIGIIE 1700
```



```
150 [1(,1,2)= E1(,1,2) - A2(1)
130011(1,5)=Y * 10000 + M * 100 + [12
1340 NEXT .I
1SO FEM IALILILATE GIITFLGWE FMF EXFENSES
13%O FDF U = 1 TG 2S
1370 FEEALI X$
180 IF INT (EO(,I,2)) 5 [14 DFF EO(.1,1) = 0 THEN 14EO
1400 A2(1) = EO(.1,1)
1410 Aご(2) = EO(,1,2)
1420 GOEIJE 1700
```



```
1440 EO(,1,Z)=(EO(,1,Z)- INT (EO(,I,Z))) + Y*10OOO + M # % 100 + [1%
1450 NEXT .l
1460 [11= [11 + 1
1470 [14 =Y1 * 10000 + M1 * 100 + I1
1450 M=M1
14%0 [2 = [1
1500 Y = Y1
1510 GMEIIE 2G%O
15%0 NEXT ド1
15:0 [1: = 1
1540 [2 = M(M1)
1550 M = M1
1560 Y = Y1
1570 GIISLIE 2750
1580 [1 = 1
1590 M1 =M
1@00 Y1 = Y
1610 GM%LIB 2G%O
1620 [14 = Y1 * 10000 + M1 * 100 + I1
16\XiO FFINT TAE( 10):"EASH IN:";IJ: TAE( 2S);"EASH IUIT:";E1
1640 FFINT
1650 FFIINT "[IG YO|I WANT TG EEE THE NEXT MONTH"
1655 FFINT "(Y/N) ":
1660 INFIIT XO*
1670 IF XO$ = "Y" THEN E70
16EO IF XO$ = "N" THEN EOO
16%0 GOTO E70
17OO FEM AFFLY EXFENEES
1710 X0% = ""
1720 IF EO-A2(1) 
1725 FFINN
1730 FFIINT "EASH NEELELI FGF: "%X多
175E FFINT " क":AZ(1);"GN HANL: ";EO
17:7 FFINT
1740 FFIINT "ENTEFT I=[IELAY EXFENSE:"
1745 FRINT "E=|SE EFELIT GAFLM ";
1750 INFUIT XO$
1760 IF XOw = "[" THEN 1%%O
1770 IF XO& " }%\mathrm{ "に" THEN 1740
1775 IF I.4=1 THEN XO = 1: IMTO 1EOO
17BO FFINT "EFELIIT EAFI N|MEEF (1-":I4:"GF ZEFIO) ";
1790 JNFIIT XO
1EOO IF X0 - 1 THEN 1740
1810 IF X0 % G4 THEN 17S0
150 IF E1(X0,2) + A2(1) = =1(X0,3) THEN 1ESO
```



```
1840 EITO 17EO
1850 11(X0,2)=11(X0,2)+A2(1)
1EOK= X0
1870 X0% = "1"
1EO GIMEUE 2160
1800 X00 = ""
1900 EIOTO 1920
1910 EO=BO-A2(1)
```

```
1%20E1 = E1 + A2(1)
1%O[B=INT ((A2(2) - INT (Aこ(こ))) * 100 + O, 5)
1940 Y = INT (AZ(Z) / 10000)
1%OM M = INT ((A2(2) - Y * 10000) / 100)
1%60 [2: = INT ((A2(2) - (Y* 10000 + M * 100)))
1970 FEM I:ALELILATE NEXT IIATE
1980 EMEIIE 2510
1990 IF XO& < % "[1" THEN 2010
ZOOO FFINT "EXFENSE IS DELAYED UNTIL ";M;"/";Dz""/";Y
2010 FETIIFN
ZOZO FEM FOILTINE TG ENTEF EFEIIT & EHAFIGE EAFLI IIATA
ZOSO FFINT "NAME IF IFELIT EAFI ";K゙:"(FETLFN TI END)"
2040 INFIIT E1$(ド)
2050 IF I1$(F゙) < = " " THEN 2S50
OOGO FFFINT "ANNIIAL INTEFEST FATE ":
2070 INFIIT E:1(ド, 1)
OOEO IF EI(K,,1) - O THEN 2O2O
20%0 FFINT "EIIFFENT EALANI:E ";
Z100 INFIIT E1(ド,2)
2110 IF E1(ド, 2) & O THEN 2OGO
2120 FFINT "EFEIIT LIMIT ":
2130 INFUT E1(ド,3)
2140 IF E1(K゙, %) - O THEN 2O%O
2150 IF I1(ド,1)=0 THEN 2%%0
2160 Ei(ド,4)= INT (0.1 E1(ド,ご)* 100+0.5)/ 100
2170 IF=に1(K゙,1) / 100
21SO FI= E1(ド,2)
21%O A1 = G1(ド,4)
200 IF FI < =0 THEN 2290
210 EISUB 2260
215 FFIINT
2゙こ0 FFINT A1:" FAYMENTS GF $";口1(ド,4)
22-5 FFINT "NEELEL TI FAY LIEBT"
227 FFFINT
2%O FFFINT "LHANLE AMEMNT (Y/N) ";
2%40 INFUT X1F
250 IF X1क < % "Y" THEN 2290
22OO FFINT "ENTEF LESIFEN FAYMENT AMIMINT ";
270 INFIIT E1(K゙,4)
280 GOTO 2180
290 IF XO丰 = "1" THEN 2%SO
ZOO FFIINT "ENTEF NEXT "#I:$(K゙);" EILLING DATE:"
Z10 AZ(Z)=0
220 GIELIE 2470
ZO IF X1 = - 1 THEN 2120
200[1(k,5)=A2(2)
#50 FETIIFN
2OO FEM FIOIITINE TOI EALEIILATE EXFENSE FFEQIIENI:IES
2%70 FEM A2() AFFAY EONTAINS FESILLTS
2GO FFINT "FEFTOLIL: AMOUNNT FGF: ";X多" "%
200 INFUIT AZ(1)
2400 IF A2(1) = O THEN 25OO
2410 FRINT "HOW MANY TIMES FER YEAF ";
2420 INFUIT A2(2)
240 IF A2(2) % = 0 THEN 2SEO
```

```
2440 IF A2(2) < 100 THEN 2470
2450 FRINT "FREQUENLY CANNOT EXDEED }99\mathrm{ DAYS"
2460 GOTO 2410
2470 G08UB 2990
2480 IF X1 = - 1 THEN 2500
2490 AZ(2) = AZ(2) / 100 + Y * 10000 + M * 100 + D2 
2500 RETURN
2510 REM FIND NEXT MONTHLY, EIMONTHLY
2515 REM OR QUARTERLY OLGURRENGE
2520 IF 24 / [% < % INT (24 / [%) THEN 2740
2530 IF [13 = 24 THEN 2620
2G40 FOR K = 1 TO 12 / LS
2550 M = M + 1
2560 IF M < = 12 THEN 2590
2570 M = 1
2580 Y = Y + 1
2590 NEXT & 
2600 FETUFN
2610 REM EALCULATE NEXT SEMIMONTHLY OLCUIRFENCE
2620 IF D2 < > D(M) OF D2 < > 1 THEN 2650
2630 [12 = 15
2640 GOTO 2690
2650 IF H2 % [(M) THEN 2680
2660 [2 = [2 + 15
2670 FETIURN
2650 D2 = L2 - 15
2690 M = M + 1
2700 IF M < = 12 THEN 2730
2710 Y = Y + 1
2720 M = 1
2730 FETIUFN
2740 [% = INT (365.25 / [13)
2750 FEM CALCULATE A DAY DS DAYS FROM M/D2/Y
2760 IF [2 + [1S < = L(M) THEN 2S70
2770 [S = DS - (D(M) - D2)
2760 [2 = 0
2790 M = M + 1
2800 IF M < = 12 THEN 2760
2810 Y = Y + 1
280 M = 1
2830 n(2) = 28
2840 IF Y / 4 < > INT (Y / 4) THEN 2S60
2850 D(2) = 29
2860 GOTO 2760
2870 [12 = n2 + n13
2E80 RETURN
2G90 FEM ELIBFOUTINE TO CALIILLATE LAY OF WEEK
2900 IF Y > 1900 THEN 2920
2%10 Y = Y + 1900
2920 IF M > 2 THEN 2945
2930 M = M + 12
2940 Y = Y -- 1
2945 A = [2 + 2 *M + INT (0.6* (M + 1)) + Y + INT (Y / 4)
2950 N = A - INT (Y/100) + INT (Y/400) + 2
2560 N = INT ((N/7 - INT (N/7)) * 7 + 0.5)
```



```
20G0 FETIIFN
29%0 FEM FIDIITINE TG ENTEF [IATE
3OO FEM IATE IS FASEEL BAEKK IN M,DZ ANL Y
O10 [(2)=2E
ZOZO FFIINT "ENTER MLNTH-LIAY-YEAF' (MMLILYY) ":
30%0 INFIIT XI
3040 IF X1=0 THEN S160
8050 IF X1= - 1 THEN 3190
#06 M = INT (X1 / IE4)
3070 IF M % 12 GF M < 1 THEN 3020
3090 Y = INT ((X1/100- INT (X1/ / 100)) * 100 + 0.5)
Z100 IF Y/4< % INT (Y/ 4) THEN }212
#10 [(2)=2%
Z120 [2 = INT ((X1 - (M* 1E4 + Y))/ 100)
3130 IF [2 - 1 THEN 3020
Z140 IF [% % II(M) THEN 3020
350 EMTO 31%0
#160 M=M1
3170 [2= DJ.
Z1SO Y = Y1
#150 FETIIFN
Z60 FEM SIIEFIUIITINE TG LETEFMINE TEFM IF LIAN
270 REM IF=INTEFEST FATE,FI=FFINEIFAL, AI=FAYMENT AMIIUNT
ZOO FEM FEF. SGIME IOMMON EASIE FFOMFAME SFD ED., FGE
3E5A=LGIG (1 + (IF / 12) * 12)
200 A1 = - (LGIG (1-(F1 * IF)/ (12* A1))/A)
300 A1 = INT (A1 * 12 + 0.E)
#10 FETIIFN
320 END
```


Critical Path Method (CPM)

This program calculates the time needed to complete a set of interrelated activities.
Before using the program, set up a CPM diagram and a precedence table. As you establish the network, make sure you include "dummy" activities in the diagram. These activities have no duration, but they may be necessary to indicate precedence of some activities over others in the network.

One feature of this program allows you to revise the network by changing activity durations and costs. In this way, you can observe changes in the critical path. Depending on the degree to which you revise the network, the path may shift by adding or eliminating activities.

Program Notes

This program currently allows 100 activities. If you want to change this, modify line 10 of the program as follows:

$$
70 \text { DIM A }(\mathrm{I}, 2), \mathrm{S}(\mathrm{I}), \mathrm{F}(\mathrm{I}), \mathrm{E}(\mathrm{I}, 2)
$$

Replace the expression I with your maximum (for example, 15, 20, and so forth).
Negative slack time can exist for an activity. However, the program does not factor this into start times, end times or the critical path length.

Example

Washoe Valves is having its statewide sale-a-thon, a contest in which the company's three salespersons travel up Indiana, covering accounts in their territories and making as many sales as possible. At the end of their sale-a-thon, all three salespeople go to Chicago for a recap meeting.

Nance Graham, the sales manager, wants to know when each salesperson should start the trip, how much time each will spend driving and selling, and when to expect each salesperson to arrive in Chicago. Her precedence chart contains daily reimbursements to help calculate travel advances.

Activity	Nodal Sequence	Time (hours)	Cost
1. Gary drives to Terre Haute	$1-2$	2	
2. Nance drives to Indianapolis	$1-3$	3	30
3. Lana drives to Muncie	$1-4$	3.5	40
4. Sell in Terre Haute	$2-5$	46	49
5. Sell in Indianapolis	$3-6$	48	125
6. Sell in Muncie	$4-7$	320	
7. Gary drives to Lafayette	$5-8$	5	125
8. Nance drives to Chicago	$6-11$	2	40
9. Lana drives to Ft. Wayne,	$7-10$	35	
drops off valves	$8-9$	16	30
10. Sell in Lafayette	$9-11$	4	90
1. Lana drives to Chicago	$10-11$	2	52
12. Gary drives to Chicago			30

How does Nance run this program?
Answer: The minimum time needed to complete the sale-a-thon is 61 hours (the critical path length), and it will cost $\$ 966$ in travel advances.

```
ERITICAL FATH METHOD
HOW MANY ACTIVITIES IN THIE NETWORK ?12
ENTER STAFT,ENL NOLES FOR ALT. 1 ?1,2
ENTER IUNFATION ANL LOST %2,30
ENTEF START,ENL NODES FOR ALT. 2 ?1,3
ENTEF DUNATION AND EOST %%,40
ENTER START,END NODES FOR ACT, 3 ?1,4
ENTER [UNATION AND LOST %3,5,4%
ENTEF START,END NOLES FOR ALT. 4 %2,5
ENTER IUNATION ANL LOST ?S6,12S
ENTEF START,END NODES FOR ADT. 5 % % 6
ENTEF RULFATION ANL LOST %4E,32O
ENTEF START, END NOLES FOR ALT. 6 74,7
ENTER IUFATION AND EOST %4S,125
ENTEF START,ENL NOLES FOF ADT. 7 %5,8
ENTEF [UURATIINN AND IOST ?O,40
ENTER START, END NGLES FOR ACT. E OG,11
ENTER DUNATIION AND COET OS,OS
ENTEF START, ENL NOLES FOR ALT. 9 77,10
ENTEF DURATION ANL GOST %2,30
ENTEF START,ENL NODES FOR AOT. 10 78,%
ENTEF [MFATION ANG LOST ?16,90
ENTER START,END NODES FOR ADT. 1.1 %%,11
ENTER IUNATION ANL COET 74,52
ENTER START,ENL NODES FOF ACT. 12 %10,11
ENTER DURATION ANL GOST %2,30
\begin{tabular}{|c|c|c|c|c|c|}
\hline ETAFT & END & EAFLI. & LATE & & \\
\hline NODE & NODE & ETART & FINISH & LIUR: & STACK COST \\
\hline 1 & 2 & 0 & 2 & 2 & GFIT. 30 \\
\hline 1 & 3 & 0 & 8 & 3 & 540 \\
\hline 1. & 4 & 0 & 9 & 3.5 & 5.549 \\
\hline 2 & 5 & 2 & St & 36 & CRIT. 125 \\
\hline 3 & 6 & 3 & 56 & 48 & \(5 \quad 320\) \\
\hline 4 & 7 & 3.5 & 57 & \(4 E\) & 5.5125 \\
\hline 5 & 8 & \(3 \pm\) & 41 & 3 & GRIT. 40 \\
\hline 6 & 11 & 51 & 61 & 5 & \(5 \quad 35\) \\
\hline 7 & 10 & 51.5 & 59 & 2 & 5.530 \\
\hline 8 & 9 & 41 & 57 & 16 & ERIT. 90 \\
\hline 9 & 11 & 57 & 61 & 4 & GRIT. 52 \\
\hline 10 & 11 & 53.5 & 61 & 2 & 5.500 \\
\hline
\end{tabular}
```

```
THE ERITILAL FATH LENGTH ISG1
```

TGTAL GOST OF THIS NETWORK $=966$

LIO YOU WANT TO EHANGE ANY ACTIVITY LURATIONS (Y/N) N

Practice Problems

1. Suppose Gary only spends 30 hours in Terre Haute. Will the critical path be different? Who will be able to wait before leaving, and for how long?

Answer: The critical path reduces to 56 hours. Gary can now wait one hour before leaving on his trip, and Lana can wait half an hour.
2. Nance may take her plane rather than drive. The flying time to Indianapolis is half an hour, and the time to Chicago is 45 minutes. She will have to pay a landing fee of $\$ 5$ at Indianapolis, and $\$ 20$ at Chicago, in addition to the costs shown above.

With this information, how long can she wait before leaving? What will the total cost be?
Answer: In the original network, Nance could wait five hours. She can now wait 11.75 hours before leaving. The total network cost is $\$ 991$.

Program Listing

```
10 FEM EFITIGAL FATH METHOL (OPM)
20 FEM A()=START ANL ENL NODES FOR EACH ACTIVITY
3O FEM S()=EARLY ETAFT TIMES FOR EACH ALTIVITY
40 FEM F()=LATE FINISH TIMES FOR EACH AOTIVITY
5 0 ~ F E E M ~ E ( ) = [ U R A T I O N S ~ A N G ~ E O S T S ~ O F ~ N O R M A L ~ A L T T V I T I E S ~
GO FEM L()=DURATIGNE AND EOSTS OF DRAGH ACTIVITIES
70 [IM A(100,2),S(100),F(100),E(100,2),Q(100,2)
80 DEF FN F(Z1) = INT ((Z1 * 1000 + :5)) / 1000
90 FRINT "EFITICAL FATH METHOD"
100 FRINT
110 FFINT "HOW MANY AOTIUITIES IN THIS NETWORK ";
120 INFUIT N
130 FOF I = 1 TO N
140 FRINT
150 FRINT "ENTER START,ENI NODES FOR ALT. ":I:" ";
160 INFYIT A(I, 1),A(I,2)
170 IF A(I,2) < = A(I,1) THEN 200
190 IF A(I,2) < N THEN 260
2OO FRINT "START NOLE MUST BE NIMEEFED LOWEF"
210 FFINT " THAN ENL NODE, ANII END NODE MUST"
20% FFINT " BE LESS THAN THE NUMEEF OF ALTIVITIES""
230 FRINT " ## TRY ENTRY AGAIN **"
240 FFINNT
250 GOTO 140
260 FRINT "ENTEF DURATION ANL EOST ";
270 INFUIT E(I, 1),E(I,2)
280 E(I)=0
290 F(I) =0
800 NEXT I
310 REM LOOF TG FINL EAFLY START TIMES FOR NETWOFK
```

$320 \mathrm{FOR} \mathrm{I}=1 \mathrm{TO} \mathrm{N}$
380 IF $S(A(I, 2)) \geqslant=S(A(I, 1))+E(I, 1)$ THEN 350
$340 \leq(A(I, 2))=S(A(I, 1))+E(I, 1)$
350 NEXT I
$360 \mathrm{~F}(\mathrm{~A}(\mathrm{~N}, 2))=\mathrm{S}(\mathrm{A}(\mathrm{N}, 2))$
370 FEM LOOF TO GALCULATE LATE FINISH TIMES FOR NETWOFK
360 FOF $I=N$ TO 1 STEF - 1
390 IF $F(A(I, 1))=0$ THEN 420
400 IF $F(A(I, 1)) \geqslant F(A(I, 2))-E(I, 1)$ THEN 420
410 EOTO 430
$420 F(A(I, 1))=F(A(I, 2))-E(I, 1)$
430 NEXT I
$440 \mathrm{E1}=0$
$450 \mathrm{~L}=0$
460 FRIINT
470 FEM GALCULATE ELACE TIME IN S 1
$4 E O$ FRINT "ETART END EARLY LATE"
490 FRINT "NODE NOLE START FINISH IUF: ETAOK EOST"
$500 \mathrm{FOF} \mathrm{I}=1 \mathrm{TGN}$
510 FFINT $A(I, 1): \operatorname{TAB}(7): A(I, 2) ; \operatorname{TAB}(12): E(A(I, 1)) ;$ TAB($1 E):$
520 FRINT $F(A(I, 2)): \operatorname{TAB}(25): E(I, 1) ; \operatorname{TAB}(30):$
$5081=F(A(I, 2))-E(A(I, 1))-E(I, 1)$
540 IF S1 > 0 THEN 590
545 IF L $\%=F(A(I, 2))$ THEN 590
5 SO FRINT "ERIT.";
$560 L=L+E(I, 1)$
570 GOTG 600
590 FFINT S1:
600 FRINT TAB (36$): E(I, 2)$
$610 E 1=E 1+E(I, 2)$
620 NEXT I
630 FRINT
©40 FRINT "THE EFITIUAL FATH LENGTH IS ":
650 FFINT "TGTAL GOST OF THIS NETWORK= ":G1
660 FRINT
670 FRINT "[IG YOU WANT TG CHANGE ANY"
$6 E O$ FRINT "ACTIVITY DURATIONE (Y/N) ":
6% INPUT A
700 IF A $=$ "N" THEN 870
710 IF A $8 \geqslant \quad$ "Y" THEN 660
720 FRINT
$7 \% 0$ FFINT "WHICH ACTIVITY ";
740 INFIIT I
750 IF I \& 1 GF $I \geqslant N$ THEN 720
770 FRINT "GURFENT DURATION IS ":E(I,1)
775 FRINT "EOST $=": E(I, 2)$
760 FFINT "ENTEF NEW DURATION AND COST ":
790 INFUT $E(I, 1), E(I, 2)$

E10 FRINT
E2O FOR I $=1 \mathrm{TON}$
$\mathrm{BO} \mathrm{E}(\mathrm{I})=0$
$840 \mathrm{~F}(\mathrm{I})=0$
ESO NEXT I
860 Giata 310
870 END

Reference

Brown, Kenneth S., and ReVelle, Jack B. Quantitative Methods for Managerial Decisions. Reading, Mass.: Addison-Wesley, 1979.

Program Evaluation and Review Technique (PERT)

This program calculates the minimum time needed to complete a complex project under uncertain conditions, and calculates the probability of the project's completion by a target time which you enter and can modify.

The program also calculates late start, early finish, and late finish times for each activity, as well as the slack time and standard deviation of expected activity times.

Before using the program, you must first organize the project, using PERT's graphing technique or a precedence table. To use the program, you must enter the number of activities in this project, including dummy activities. For each activity, you need to enter its start and end nodes, followed by the optimistic, most likely, and pessimistic duration estimates.

When you enter each activity, you must be sure each start node you enter is greater than the previous end node. If not, the program will ask you to reenter the start and end nodes.

Program Notes

This program is set for a maximum of 100 activities. If you want to change this, modify line 60 of the program as follows:

$$
60 \text { DIM A }(\mathrm{I}, 2), \mathrm{S}(\mathrm{I}), \mathrm{F}(\mathrm{I}), \mathrm{E}(\mathrm{I}, 2)
$$

Replace the expression I with your maximum.
Negative slack time can exist for an activity. However, the program does not factor this into start times, end times, or the critical path length.

Example

Harriet just bought a Victorian house, advertised as a fixer-upper. She asked her contractor to provide her with three time estimates for each task involved in the remodeling. Her PERT chart and precedence table look like this:

Activity	Start Node	End Node	Optimistic Time	Most Likely Time	Pessimistic Time
1. Scrape exterior	1	2	1	2	4
2. Remove wallpaper	1	3	2	3	4
3. Replace cabinetry	1	4	3	4	7
4. Paint exterior	2	5	2	3	6
5. (dummy activity)	3	6	0	0	0
6. Lay kitchen floor	4	6	1	2	2.5
7. Paint exterior trim	5	7	1.5	2	4
8. Paint interior walls	6	7	2	3	3
9. Refinish wood floors	7	8	2	5	

How will she run the program? What is the minimum time needed to complete the project? What is the probability of completing it one day sooner than expected?

Answer: The minimum time to complete the project is 12.916 days. The probability of completing the remodeling in 11.916 days is approximately 12.96%.

```
    FRIIGRAM EVAlllation
    AND REVIEW TECHNIQUE
```

ENTEF THE NUMBEF OF AOTIVITIES IN THIS NETWOFK ?

```
-----ACTIVITY 1------
```

ENTER START NODE, END NODE 71,2
ENTEF THFEE TIME ESTIMATES:
FOR THIS AOTIVITY ($A, 1, B$) $21,2,4$
------ACTIVITY $2-\cdots-\cdots$
ENTER START NODE, END NODE $\geqslant 1,3$
ENTEF THREE TIME ESTIMATES
FOR THIS AOTIVITY (A, M, B) $2,3,5$
-----ACTIVITY Z-----
ENTER START NODE, END NODE 71,4
ENTEF THFEE TIME ESTIMATES
FOR THIS ACTIVITY (A, M, E) $3,4,7$
-----ACTIVITY 4ENTER ETART NODE, ENL NDDE 72,5ENTEF THFEE TIME ESTIMATES
FOR THIS AOTIVITY (A, M, B) $2,3,6$
-----ACTIVITY E-----
ENTER START NODE, ENL NODE 23,6 ENTEF THFEE TIME ESTIMATES FOR THIS ACTIUITY (A, M, B) O, O, O
-----ALTIVITY 6-----
ENTER START NODE, END NOLE 74,6 ENTER THFEE TIME ESTIMATES FOF THIS ACTIUITY (A, M, B) $21,2,2.5$
-------ACTIVITY 7-----
ENTER START NODE, END NODE 957
ENTEF THFEE TIME ESTIMATEE
FOR THIS AGTIVITY (A,M,B) $21,5,2,4$
----ACTIVITY EENTER START NODE, END NODE 76,7ENTEF THREE TIME ESTIMATESFOR THIS ACTIVITY (A, M, B) $2,3, \Xi$
-----ACTIVITY 9-......
ENTER START NODE, ENLI NODE $77, \Xi$ENTEF THFEE TIME ESTIMATESFOR THIS AGTIVITY (A,M,E) $2,4,5$
AOTIVITY 1 (NODE 1 TO NODE 2)
IS A NON-CFITICAL EVENT.
EXFECTED DURATION: 2.167
ETANLAFII LEVIATION: . 5
EARLY START: 0
LATE ETAFT: 1. 3 O
EAFLY FINISH: 2.167
LATE FINISH: 3.5
ELADK TIME: 1.333
AGTIVITY 2 (NODE 1 TO NODE 3)
IS A NON-LFITICAL EVENT.
EXFEGTED DURATION: 3.167
ETANLIARL DEVIATION: . 5
EARLY START: O
LATE START: $3.0 E 3$
EARLY FINISH: 3.167
LATE FINISH: 6.25
ELACK TIME: 3.053
ACTIVITY 3 (NDDE 1 TO NODE 4)
IS A EFITICAL EVENT.
EXFELTEL DURATION: 4.3S®
ETANDAFD DEVIATION: 667
ETART NG LATER THEN: O
MUET EE COMFLETEL BY: 4,33300001
ACTIVITY 4 (NODE 2 TO NODE 5)
IS A NON-CRITICAL EVENT.
EXFELTEL IUIRATION: 3. 358
STANDARID DEVIATIDN: .667
EAFLY ETAFT: 2.167
LATE START: 3.5
EARLY FINISH: 5. 5
LATE FINISH: 6.835
ELACK TIME: 1.353
AOTIVITY 5 (NODE 3 TO NODE 6)
IS A NON-LFITICAL EVENT.
EXFEETEL LUIRATION: 0
ETANLAFIL DEVIATION: O
EAFLY START: 3.167
LATE START: 6.25
EARLY FINISH: $\mathbf{3} 167$
LATE FINISH: 6. 25
ELAOK TIME: 3.083

ACTIUITY 6 (NDDE 4 TG NODE 6) IE A EFITICAL EVENT. EXPEITED LURATION: 1.917
ETANDAFII DEVIATION: 25
START NO LATER THEN: 4.333
MUET EE COMFLETEL BY: 6.25
AQTIVITY 7 (NODE 5 TO NODE 7)
IS A NON-CRITICAL EVENT.
EXFEGTEL IURATIGN: 2.25
STANDARD LEVIATION: . 417
EAFLLY ETAFT: 5.5
LATE START: 6. ES 3
EAFILY FINISH: 7.75
LATE FINISH: 9.089
ELACK TIME: 1.335
ADTIVITY 3 (NODE \Leftrightarrow TO NOLE 7)
IS A EFITICAL EVENT.
EXFEGTED DURATION: 2.833
ETANDAFII DEVIATION: 167
STAFT NO LATER THEN: 6.25
MUST BE LOMFLETED EY: 9.0 OS
ACTIVITY 9 (NODE 7 TO NODE B)
IS A ERITILAL EVENT.
EXFEETEI LIURATION: 3.83
ETANDARID DEVIATION: 5
ETAFT NO LATER THEN: 9.0 O
MUET BE COMFLETED BY: 12.916
THE ERITICAL FATH LENGTH IS 12.916
FLUS IF MINUS $6 E 6159128$
ENTEF LESIREM GOMFLETION TIME
(0 TO END) 711.916
FFOBABILITY OF GIMFLETION WITH
IIURATION OF 11.916 IS . 129551953
ENTEF DESIFED GOMFLETION TIME
(I TO END) 70

Practice Problems

1. A project is charted on the precedence table below:

Activity	Optimistic Time	Most Likely Time	Pessimistic Time
$1-2$	5	1	2
$2-3$	1	2	3
$2-4$	1	3	5
$3-5$	3	4	5
$4-5$	2	3	4
$4-6$	3	5	7
$5-7$	4	5	6
$6-7$	6	7	8
$7-8$	2	4	6
$7-9$	5	6	8
$8-10$	1	2	3
$9-10$	3	5	7

What is the critical path length? What is the probability of completing it within 30 weeks?
Answer: Critical path length is 27.25 weeks. The probability of completing the project within 30 weeks is 0.980952281 .
2. Here is another precedence table:

Activity	Optimistic Time	Most Likely Time	Pessimistic Time
$1-2$	1	4	7
$1-3$	1	6	11
$2-4$	3	5	13
$3-4$	2	7	12
$3-5$	2	5	8
$4-5$	6	8	16
$4-6$	2	5	14
$5-7$	3	4	5
$6-7$	1	2	3

What are the slack times for the non-critical activities in this network? How many days will the project take if we want to be at least 90% sure of completing it on time?

Answer: Slack times: activity 1, 3 days; activity 3, 3 days; activity 5, 11 days; activity 7, 5 days; activity 9,5 days. The project will take 29.725 days at the 90.0022732% confidence level.

Program Listing

```
10 FEM FFOIGRAM EVALUATION AND FEVIEW TELHNIQUE (FEFT)
20 REM A()=START AND END NDDES FOR EADH ACTIVITY
ZO FEM S()=EARLY START TIMES FOR EAOH AOTIVITY
40 REM F()=LATE FINISH TIMES FOR EADH ADTIVITY
5 0 ~ F E M ~ E ( ) = E X F E G T E L ~ L U R A T I O N S ~ A N L ~ V A F I A N G E S ~ O F ~ A C T I V I T I E S ~
60 [IM A(100,2), S(100),F(100),E(100,2)
65 [EF FN Fi(Z1) = INT ((Z1* 1000 + .5)) / 1000
70 FRINT " FROURAM EVALUATION"
BO FRINT " ANL FEVIEW TECHNIQUE"
90 FRINT
```

```
100 FRINT " ENTEF THE NUMEER OF"
110 FRINT "ACTIVITIES IN THIS NETWORK ":
120 INFIIT N
130 FFINT
140 FOR I = 1 TO N
150 FRINT
160 FRINT "------ACTIVITY ";I:"-----"
170 FRINT "ENTER START NODE, END NODE ";
1EO INFUT A(I,1),A(I,2)
190 IF A(I,2)< = A(I,1) THEN 220
200 IF A(I,2) & N THEN 2EO
220 FRINT " ETART NODE MUST EE NLMEEFED LOWER"
2OO FRINT " THEN ENI NODE, ANL END NODE MUST"
240 FFINT "EE LESS THAN THE NUMBEF OF ADTIVITIES."
25O FFINT " *** TRY ENTFYY AGAIN ##*"F
260 FFINT
270 GOTO 150
2EO FRINT "ENTER THFEE TIME ESTIMATES"
290 FFINT "FOR THIS AOTIUITY (A,M,B) ";
300 INFIIT AL,M,E
310 FEM E(I,1) IS THE EXFECTED DURATION
320E(I,1) = FNF((A1 + M*4 + B) / 6)
80 FEM E(I,2) IS THE ACTIUITY VARIANCE
340 E(I,2)=FNFi((B-A1) / 6) <2
SO S(I) = O
360 F(I) =0
370 NEXT I
SO FEM LOOF TO FINI EAFLY ETART TIMES FOR NETWORK
890 FOR I = 1 TO N
400 IF S(A(I,2)) > = S(A(I,1)) + E(I,I) THEN 420
410S(A(I,2))=E(A(I,1)) + E(I,1)
420 NEXT I
4%0 F(A(N,2))= S(A(N,2))
440 FEM LOOF TG GALCULATE LATE FINISH TIMES FOR NETWORK
450 FOR I = N TO 1 ETEF - 1
460 IF F (A(I, 1)) = O THEN 490
470 IF F(A(I,1)) > F(A(I,2)) - E(I,1) THEN 490
480 GOTO 500
490 F(A(I,1))=F(A(I,2))-E(I,1)
5 0 0 ~ N E X T ~ I ~
510v=0
520 C=0
50 L =0
540 FOR I = 1 TO N
5SO FEM EALCULATE SLADK TIME IN SI
560 S1 = F(A(I,2)) - S(A(I,1)) - E(I,1)
5ES1=INT (S1 * 1E6 + .5)/1E6
5 7 0 ~ F R I N T
5 8 0 ~ F F I I N T
590 FFINT "AOTIVITY ";I;" (NOME ";A(I;1):" TG NODE ";A(I;2);")"
6OO FFINT "IS A ";
60 IF E1 < = O THEN 680
620 FFINT "NON-":
60 FRINT "EFITICAL EVENT."
640 FRINT "EXFEGTED IURATION: ":E(I,1)
```

```
GEO FFINT "ETANDARD DEVIATION: "; EQF (E(I,Z))
660 IF S1 > O THEN 740
670 FFINT "ETAFT NG LATEF THEN: ":S(A(I,1))
6BO FRINT "MUST EE LOMPLETED BY: ";F(A(I,2))
6% FEM ACOIMLILATE FATH LENGTH IN L, VAFIANGE IN V
700 IF L > = F(A(I, 2)) THEN 720
710 L = F(A(I,2))
720V = V + E(I,2)
7%0 GOTO 7%0
740 FFIINT "EARLY START: ":S(A(I,1))
750 FRINT "LATE ETART: ";F(A(I,2)) - E(I,1)
760 FRINT "EARLYY FINIGH: ":S(A(I,1)) + E(I,1)
770 FRINT "LATE FINISH: ":F(A(I,2))
7EO FRINT "SLACK TIME: ":S1
790 NEXT I
800 FFINT
E1O FRINT "THE ERITIEAL FATH LENGTH IS ":L
EO F = SQR (V)
EO FFINT "FLUS OF MINUS ";F
840 FFINT "ENTER DESIRED IOMFLETION TIME"
E45 FFINNT "(O TO ENLI) ";
850 INFUIT II
860 IF [ < = 0 THEN 1010
E70 REM GALLULATE Z-SGORE FOR LESIRED IUIRATION
860 Y = (L - L) / F'
E%O REM EALELILATE ELIMULATIVE AREA UNDEF NORMAL IIETRIEUTION
GOO FEM REF: SOME GOMMON EASIC FROGRAME, SRL ED, F:12E
910F = EXF ( - (Y A z) / 2) / 2.50662E2746
720 Z = Y
90 Y = 1 / (1 + .38267 * ABE (Y))
940 T = 1 - R * (.4361836 * Y - .1201676 * Y * 2 + .937298 * Y * 3)
950 IF Z > = 0 THEN 970
960 T = 1 - T
970 FFiINT "FFOBABILITY OF COMFLETION WITH"
980 FRINT "DURATION OF ":L:" IS ";T
9%O FFiINT
1000 GOTO 840
1010 END
```


References

Brown, Kenneth S., and ReVelle, Jack B. Quantitative Methods for Managerial Decisions. Reading, Mass.: Addison-Wesley, 1979.
MacCrimmon, K.R., and Ryavec, C.A. An Analytical Study of the PERT Assumptions. Santa Monica, Calif.: Rand Corporation, Memo RM-3408-PR, 1962.
Moore, Franklin G., and Hendrick, Thomas E. Production/Operations Management (3rd ed.). Homewood, Ill.: Richard D. Irwin, 1977.

Transportation Algorithm

This program allows you to allocate a resource from multiple sources of supply to multiple destinations in the most cost-efficient way. The resource can be anything such as manufactured goods, personnel, and so forth. Linear programming can be used to solve this type of problem, but here you do not need to convert costs into an objective function, nor do you need to express data as coefficients in a series of linear equations.

To use this program, you will need to know how many sources of supply are available, as well as the supply capacity for each source. The number of demand destinations, as well as their exact demand for the resource, are also needed. Finally, you need to know the cost of transporting the resource from each source to each destination. The program will ask you for all of this information when you run it, so be sure to have it organized before entering it into the computer.

If available supply does not equal prevailing demand, the program automatically assigns the difference to a dummy source (supply less than demand) or dummy destination (supply greater than demand). Each assignment of the resource, its transportation cost per unit and its total assignment cost, print out at the end of the program. If dummy variables exist in a given problem, these assignments are printed out for your information.

Program Notes

This program allows for ten sources and ten destinations. If you want to change this to another maximum, modify lines 20 and 30 as follows:

```
20 DIM S(I,2), D(J,2), Sl(I + J,2), C(I,J), A(I,J), Y(X,2), M(3)
30 DIM R1(I), K1(J)
```

Replace the expression I with the maximum number of sources, and replace J with the maximum number of destinations. Replace X with the maximum number of sources plus the maximum number of destinations minus one.

You may want to change the program to receive data through DATA statements, rather than INPUT statements. If so, modify the program as shown in the "Option" section.

Example

Smiling Jack owns an organic crop dusting operation. He has three planes which have capacities for 65, 150 , and 80 gallons of insecticide each. Tomorrow, four farms need dusting. Jack calculates that, based on the sizes of the fields, they will need $100,45,90$, and 60 gallons for the fields, respectively. Since each plane has a different capacity, and since the fields are in four different counties, Jack estimates the costs as follows for each gallon of insecticide: For plane 1 to field $1,0.05$; to field $2,0.12$; to field $3,0.08$; to field $4,0.11$. For plane 2 to field $1,0.04$; to field $2,0.03$; to field $3,0.06$; to field $4,0.04$. For plane 3 to field $1,0.09$; to field $2,0.14$; to field $3,0.13$; to field $4,0.18$. How does Jack enter this information, what are the assignments for tomorrow, and what is the total transportation cost?

Answer: The optimal assignments are: Plane 1 to field 1, where it will spray 20 gallons, and on to field 3 where it will spray 45 gallons. Plane 2 goes to field 2 first, spraying 45 gallons, then proceeds to field 3 , where it uses 45 gallons of insecticide. Finally, Plane 2 goes on to field 4, where it uses the last 60 gallons of spray. Plane 3 goes to field 1 to complete the job which Plane 1 did partially. The total cost, based on those entered, is estimated at $\$ 18.25$.

TRANEFDFTATIGN ALGORITHM

NUMEER DF SOURCES					
NUMEEF UF DESTINATIUNS 74					
CAFAETTY FOR EOURTE 1 O65					
GAFALITY FOR 50					
CAFAGTTY FOF EOUREE 3 OE					
पEMANL FFOM UESTINATIUN 1 ?100					
DEMANG FFOM DESTINATION					
DEMAND FFOM DESTINATION					
DEMAND FFOM DEETINATION 460					
TFANSFORTATIUN EOETS:					
FFOM SOUFOE 1 TO DESTINATION 1 T. 0					
FFOM STIIFICE 1 TO LESTINATION $2 \cdots 12$					
FFOM SOUREE 1 TO					
FFOM SOUFLEE 1 TU DESTIMATION					
FFOM SOUFIEE 2 TO					
FFOM SOUFTE 2 TO DESTINATIUN $2 \geqslant .08$					
FFOM EQURCE 2 TU					
FFOM SOUFOE 2 TU DESTINATIUN					
FFOM GOUFIE E TO DESTINATIO					
FFOM SOUFTCE 3 TO					
FFOM SOUFOE 3 TO DESTINATION					
FFOM SOURTE $\%$ TO DEETINATION 4 ? 13					
GOUROE DEST \# UNITE EOST TOTAL GOET					
5					
EOUFEE DEST \# UNITS GIET TGTA					
13045					
GULTE 口EST \# UNTTS LOET TGTAL EOET					
2	2	45	. 03	1.55	
SOURCE DEST \# UNTTS GOST TOTAL GOST					
$2 \quad 3 \quad 4 \mathrm{E}$ 2 .06 2					
SOUFEE DEST \# UNITS GOET TOTAL					
$2 \quad 4.60 \quad 64$					
SOUFEE DEST \# UNITS CTET TO					

TOTAL GOST OF EOLUTION: $1 E, 25$

DO YOU WANT TO RE-FIUN THIS
FFOIFAM WITH NEW MATA (Y/N) TN

Practice Problems

1. The Skinheads Motorcycle Enthusiasts Society has three chapters in the state, and three imminent social engagements with competing clubs. Based on intelligence reports, the Skinheads know that they will encounter 75,19 , and 22 people respectively. Their three chapters have 35,20 , and 61 members. The mileage from chapter 1 to location 1 is 35 miles; to location 2,80 miles; and to location 3,60 miles. From chapter 2 to location 1, the distance is 90 miles; to location 2,40 miles; and to location 3,55 miles. From chapter 3 to location 1, the distance is 50 miles; to location 2,28 miles; and to location 3,65 miles.

How should people be assigned? How far, in miles, will everyone in the club have traveled to reach the destinations?

Answer: 35 persons from chapter 1 to location 1; 20 people from chapter 2 to location $3 ; 40$ people from chapter 3 to location $1 ; 19$ people from chapter 3 to location 2, and two from chapter 3 to location 3. The total miles traveled (assuming one person per bike): 4,987 .
2. Given the following table, what is the optimal transportation mix? How much does it cost?

Project	Weekly Demand	Plant	Weekly Capacity
A	170	J	130
B	250	K	200
C	100	L	190

Costs:

From	To A	To B	To C
J	$\$ 2$	$\$ 5$	$\$ 5$
K	9	13	9
L	2	4	6

Answer: 70 units from Plant J to Project Site A; 60 units from Plant J to Project B; 100 units from Plant K to Project A; 100 units from Plant K to Project C; and 190 units from Plant L to Project B.

Program Listing

```
10 FEM TFANGFORTATION ALGORITHM
20 [IM S(10,2), D(10,2),S1(20,2),0(10,10)
30 [IMM A(10,10),Y(19,2),M(3),F1(10),K1(10)
40 FRINT "TRANSFORTATION ALGIDRITHM"
5 0 ~ F F I N T ~
GO FRINT "NUMEEF OF SGUROES ":
70 INFUIT 52
EO IF E2 < 1 THEN &O
GO FRINT "NUMEER DF DESTINATIDNS ":
100 INFUIT [II
110 IF [1 < 1 THEN 90
120 FEM ENTEF ELIFFLY GAFAGITY FOR EACH EOUNOE
130 T1 = 0
140 FOF Fi = 1 TO S2
150 FRINT "GAFACITY FOR GOURIEE ":R";";
160 INFUIT S(Fi,1)
170 S(F,2)=E(R,1)
180 T1 = T1 + S(Fi,1)
190 NEXT Fi
200 T2 = 0
21O FEM FEAII IATA LIET OF IEMAND FFIMM
215 FEM EACH DESTINATION
220 FOR F = 1 TO M1
2GO FRINT "DEMAND FROM LESTINATION ":F:"" ";
240 INFUIT IM(R,1)
250 [(F,2,2)= п(F;1)
200 T2 = T2 + [(R,1)
270 NEXT F
2GO FEM LOOF TO REAL TFANSFGRTATION COSTS
290 FRINT "TRANSFORTATION COSTS: "
300 FOR F = 1 TO 52
#10 FEM INITIALIZE ELEMENTS F S1() ARFAAY
32051(F,1) = 0
```

$3081(\mathrm{~F}, 2)=0$
340 FORK $=1$ TO DI
$345 \mathrm{~A}(\mathrm{~F}, \mathrm{~K})=0$
BSO FRINT＂FFOM EOUREE＂；F：＂TG DESTINATIGN＂；K＂＂＂；
360 INFIIT E（R，K）
370 IF I（R，R）\＆O THEN 350
380 NEXT K
350 NEXT Fi
400 FEM THE MATRIX HAS BEEN ENTEREI－ETART FIFET GOLITION FHAGE
$41050=0$
$420 \quad 10=0$
480 IF T1＞$=$ T2 THEN $4 E 0$
440 FEM SUFFLY MUET EQUAL DEMANL；EET IIF LUMMY FOWE \＆EOLIMME
$450 \leq(52+1,1)=T 2-T 1$
$460 \Xi(E 2+1,2)=T 2-T 1$
$47050=1$
475 GOTO 510
480 IF T2 $=$ T1 THEN 510
$490 \mathrm{D}(\mathrm{D1}+1,1)=\mathrm{T} 1-\mathrm{T} 2$
$500[(D 1+1,2)=T 1-T 2$
$505[10=1$
$510 \mathrm{n}=0$
$520 \mathrm{~T}=0$
5 SO REM ETAFT EOLUTION WITH NOFTHWEST EOFNEF RULE
540 FOR R $=1$ TO $52+50$
550 FEM IF SIIFPLY AT FIOW Fi EXHAUSTED，MOVE TO NEXT GOUFICE
560 IF $S(F, 2)=0$ THEN 770
570 FEM ALLOI：ATE GUPLY TO IEMANI
580 FOR K $=1$ TO［11＋DO
590 REM IF DESTINATION K FILLED，INIGEMENT EOLUMN INDEX
600 IF $D(K, 2)=0$ THEN 760
610 IF $\varrho(R, 2)=0$ THEN 760
620 IF $S(R, 2)$（ $\quad(K, 2)$ THEN 690
630 REM SET UF STGNE EQUAFE IF DEMANLG＝EUFFLY
$640 \mathrm{~A}(\mathrm{~F}, \mathrm{~K})=\square(\mathbb{K}, 2)$
$650 \Xi(\mathrm{R}, 2)=\Xi(\mathrm{F}, 2)-[1(\mathbb{K}, 2)$
660 口（K゙っこ）$=0$
670 GOTG 720
GEO FEM SET UF ETONE SDUARE IF IEMANI $>$ EIPFLY
$690 \mathrm{~A}(\mathrm{R}, \mathrm{K})=\mathrm{S}(\mathrm{F}, 2)$
$700 \amalg(\mathbb{K}, 2)=\square(\mathbb{K}, 2)-S(\mathrm{Fi}, 2)$
$710 \leq(\mathrm{F}, 2)=0$
$720 \mathrm{n}=\mathrm{az}+1$
$730 \mathrm{~T} 3=\mathrm{T} 3+(\mathrm{A}(\mathrm{R}, \mathrm{K}) * \mathrm{E}(\mathrm{R}, \mathrm{K}))$
$74081(\mathrm{D} 2,1)=\mathrm{F}$
$75051(\mathrm{Dz}, 2)=$ K
760 NEXT K
770 NEXT Fi
780 FEM GHECK EOLUTION FOF FIFGT－STAGE DEGENEFAD：Y
790 IF $[2=52+50+\square 1+[0-1$ THEN 1140
EOO REM SOLVE LEGENEFATE SOLITIIN
$810 \mathrm{Fi}=0$
820 K＝
830 I＝
$\varepsilon 40 I=I+1$

```
SO IF A(S1(I,1),S1(I,2))=[1(S1(I,2),1) THEN E70
EO IF A(S1(I,1),S1(I,2))< % S(SI(I,1),1) THEN FOO
E70 Fi=51(I,1)+1
80 k = 51(I,2)
EOO EOTO 10%O
%00 IF I < [2 + M0 THEN 840
%10 FEM IF Fi & F゙ AFE ZEFOI, THE MATFIIX IS NOT LIEGENEFIATE
90 IF Fi + K = O THEN 1140
%0 IF =1(I - 1,2) = K% THEN %60
70 < = 31(I - 1,2)
#50 GOTO 1000
%0}\mathrm{ IF F゙= [2 + [10 THEN 900
70 ド= = + + 1
#% GMTO 1000
7%0 K゙= ド-1
10OO FEM INEEFT A NEW ETGNE EGUAFE IN THE EOLITIGIN
1010 IF &゙ こ S1(I,2) THEN 10%0
1020 I = I - 1
10:0 FOF , = [2 + 1 TGI + 1 STEF - 1
104051(0,1)=51(01 - 1,1)
1050 E1(.1,2)=\Xi1(,1-1,2)
105EMO = .|
1060 NEXT .l
1070 51(MO,1)=Fi
10EO S1(MO,Z)=ド
10%0 Y(I,1)=0
1100 Y(I,2)=0
1110[2% [2% + 1
1120 [UOTO 790
113O FEM EALEIILATE FIEM VALIIEE
1140 FIFI I = 1 TI [1 + [O
1150k゙1(I)= - FE4
116O NEXT I
1170 FOIF I=1 TISZ + 50
1180 FI(I) = - FE4
1150 NEXT I
1200 F1(E1(1,1))=0
1210 ド1(E1(1,2))=E(E1(1,1),\Xi1(1,2))
1220 F=1
12%0 K = 1
1240 I = 1
1250 I = I + 1
1260 IF F゙1(SI(1,2)) < % - %E4 THEN 1\XiO0
1270 IF FII(S1(I,I)) = - OE4 THEN 13%0
```



```
1290 K = K + 1
1300 IF Fil(SI(I,1)) < % - GE4 THEN 13S0
1S10 F1(SI(I,1))= =(SI(I,1),S1(I,Z))-K゙I(SI(I,Z))
130FF=Fi+1
1350 IF I < I2 THEN 1250
1340 IF &゙ < II + [MO THEN 1240
130 IF Fi % %2+50 THEN 1240
1%0 I = 1
1370M(1)=0
1SO FEM FINII AN ELEMENT WITH THE LIWEST INIEX
```

```
1390 FOR R \(=1\) TO \(52+50\)
\(1400 \mathrm{FOR} K=1 \mathrm{TO} \mathrm{H} 1+\mathrm{LO}\)
1410 IF R © \(>\) S1(I, 1) THEN 1450
1420 IF K < \(>\) SI(I,2) THEN 1450
1430 I = I + 1
1440 GOTO 1490
\(1450 \mathrm{IF} M(1)\) © E(Fi,k) - \(\mathrm{F} 1(\mathrm{~F})\) - K1 (K) THEN 1490
\(1460 M(1)=E(R, K)-F I(R)-K 1(K)\)
\(1470 \mathrm{M}(2)=\mathrm{F}\)
\(1480 \mathrm{M}(\mathrm{S})=\mathrm{K}\)
1490 NEXT K
1500 NEXT Fi
1510 IF M(1) \(>=0\) THEN 2790
1520 FEM FIND A LLDSEI PATH FROM SDUARE AT FOW R, COL. K
\(1550 Y(1,1)=M(2)\)
\(1540 Y(1,2)=M(3)\)
\(1550 \mathrm{Q}=1\)
1560 IF M(2) \(=52+50\) THEN 1960
1570 REM MO=LURFENT ROW TO SEARIOH ON:
1575 FEM MI=ETAFT COLUMN TO SEAFOH ON
\(1580 \mathrm{MO}=\mathrm{Y}(0,1)\)
\(1590 \mathrm{M1}=1\)
1600 FEM ETART FIOW SEAFIOH
\(1610 \mathrm{I}=0\)
\(1620 I=I+1\)
16 BO IF \(\Xi 1(I, 1) \geqslant \mathrm{MO}\) THEN 1670
1640 IF \(51(I, 1)\) © MO THEN 1660
1650 IF \(\Xi 1(I, 2) \geqslant=\) M1 THEN 1720
1660 IF I C D2 THEN 1620
1670 IF \(Q<>1\) THEN 1700
1680 FRINT "MATRIX IS DEGENERATE"
\(16 \% 0\) GiOTO 2410
1700 REM AT THIS FOINT, NO ROW NEIGHEOFS EXIST
1710 GOTO 1830
1720 REM MAKE EURE \(V(I)\) IS NOT ALFEADIY ON THE GLOEED FATH
\(1730 \times 0=0\)
1740 FOF \(.1=1\) TO
1750 IF \(S 1(I, 1)\) © \(\geqslant Y(.1,1)\) THEN 1780
1760 IF \(S 1(I, 2) \ll Y(, 1,2)\) THEN 1780
\(1770 \times 0=1\)
1780 NEXT .-I
1790 IF \(\times 0=0\) THEN 1890
\(1800 \mathrm{MI}=\Xi 1(1,1)+1\)
1810 IF M1 \(=[1+[0\) THEN 1660
1820 FEM FOW SEARICH FAILEL;
1825 REM SET NEXT COORLINATES FOR COLUMN SEARLH
\(1850 \mathrm{~F}=\mathrm{Y}(\mathrm{Q}, 2)\)
\(1840 \mathrm{Fi}=Y(\mathrm{Q}, 1)+1\)
\(1850 Y(0,1)=0\)
\(1860 Y(Q, 2)=0\)
1870 = \(0-1\)
1880 G0TO 2000
\(18900=0+1\)
\(1900 Y(0,1)=51(I, 1)\)
\(1910 Y(Q, 2)=81(I, 2)\)
```

```
1920 IF Q < = 2 THEN 1950
1930 FEM IF FATH ELOEES ON A FOW EEAFTH,
19S5 FEM EXIT SEARCH FOUITINE
1940 IF Y(Q,2) = M(3) THEN 2340
1950 M1 = Y(0,2) + 1
1960 FEM EOLUMMN SEAROH AREA
1970 REM F=COLUMN NUMEER TO SEAROH DN
1975 FEM FI=STARTING FOW FOR SEAROH
1980 F = Y(0,2)
1990 F1 = 1
2000 K = 0
2010 K=K + 1
2020 IF E1(K,1) < FI THEN 2040
2050 IF S1(K,2) = F THEN 2120
2040 IF K < [2 THEN 2010
2050 REM COLUMN SEAROH FAILURE;
2055 REM SET NEW GOORLINATES FOR FOW SEAROH
2060 MO = Y(0,1)
2070 M1 = Y(Q,2) + 1
2080 Y(0,1) = 0
20%0 Y(Q,2)=0
2100 Q = Q - 1
2110 GOTO 1610
2120 x0 = 0
2130 REM LOOKUF FOUTINE:
2135 FEM DHEDK FOR ALREADY-USED STONE SDUARE
2140 FOR .1 = 1 TG D
2150 IF S1(K゙,1) < > Y(.,1) THEN 2180
2160 IF S1(k,2) < > Y(.1,2) THEN 2180
2170 x0 = 1
2180 NEXT .-1
2190 IF X0 = 0 THEN 2250
2200 F1 = S1(K゙,1) + 1
2210 IF F1 < = 52 + 50 THEN 2040
2220 GOTO 2050
2230 FEM A UINIDUE ETONE EDLIARE WAS FGUNDI---
2240 FEM ADD IT TO THE ILOSED PATH ARRAY.
2250 日 = Q + 1
2260 Y(0,1) = S1(k,1)
2270 Y(Q,2)= S1(K,2)
22EO REM IF FATH ILISES IN COLIMM SEARCH,
22S5 FEM EXIT SEAFOH FOUITINE
2290 IF Y(0,1) = M(2) THEN 2S40
2300 F1 = Y(0,1) + 1
2310 MO=Y(D,1)
2520 M1 = Y(0,2) + 1
2350 GOTG 1610
2340 REM FIND LOWEST-ALLOUATION ETONE
2545 REM SDUAFE ON LLQEED PATH
2350 X0 = A(Y(2,1),Y(2,2))
2360 FOR K = 4 TO Q STEF Z
2570 IF XO < = A(Y(K,1),Y(K,2)) THEN 2390
2580 X0 = A(Y(K,1),Y(K,2))
2390 NEXT K
2400 FEM ALTEFNATELY ADI & SlIBTFACT XO
```

```
2410 F=0
2420 FOFK= = TO G
2430 K゙O=K / 2
2455 IF KOO = INT (ドO) THEN 2460
Z440 A(Y(K, 1),Y(K゙,Z))=A(Y(K゙,1),Y(ド,2))+X0
2450 EOTIT 2600
2460 A(Y(ド, 1),Y(ド,Z))=A(Y(ド,1),Y(ド,2))-X0
2470 IF A(Y(ド,1),Y(ド, Z)) O O THEN 26\XiO
2480 FEM LIELETE ANY SIGUAFES WITH A ZEFOI ALLIIEATION
2490 I = O
250% F = F + 1
250 FEM IF F`%1, MATFIX WILL EE IEGENEFATE
Z5N FEM IF SMIMFE IS LIELETELI: EKIF IT
250 IF F % 1 THEN 2600
250 I = I + 1
2540 IF SI(I,1) < % Y(ド,1) THEN 2500
250 IF SI(I,2) < % Y(ド,2) THEN 2SEO
250 FOF & = I TG [IV
2570 51(,1,1)=51(.1 + 1,1)
25051(,1,2)=51(,1+1,2)
250 NEXT .1
200 =1([2%1)=0
2610 51(M2,2)=0
2620 [2 = ח2 - 1
260 NEXT K゙
2640 FEM INEEFIT NEW ETGNE SIOIAFE FFIOM
2645 FEM FIF:ST ELEMENT IF }Y(
260 I = 0
2060 I = I + 1
265 IF I ` [I2 THEN 2700
2670 IF Y(1,1) > S1(I,1) THEN 2660
2080 IF Y(1,1) < S1(I,1) THEN 2700
20%0 IF Y(1,2) % S1(I,2) THEN 2心60
2700 FOF .l = [% TG I \XiTEF - 1
2710 S1(,1 + 1,1)= S1(,1,1)
27% 51(,1+1,2)=51(,1,2)
2730 NEXT .-I
2740 S1(I,1)=Y(1,1)
2750 S1(I,Z)=Y(1,玉)
2760 [2 = [2 + 1
2770 FEM ENL IF FEE-ALLIIG:ATION:
2775 FEM FIEITEFATE MMLI EHEL:゙
2780 GITII 1140
27%O FEF LISFLAY FEGLILTS ANL IOET GF EGLIITIGN
2g00 FRINT
2E10 IF [OO + 50 = O THEN 2G70
```



```
ZEOO IF [10 = 0 THEN 2EEO
2B40 FFINT "EXIESS SMFFLY ("%L\M1 + [10,1);")"
2G45 FFINT "ASEIGNELI TI IESTINATION ":[II + [OO
250 IF 50 = 0 THEN 2.870
ZGKO FFIINT "EXIESS IEMAND (":E(Eこ + EO,1):")"
```



```
280 X0 = 0
20% FOF I = 1 TO [%
```

```
2890
2900 FRINT SI(I,I); TAB( E):S1(I,2): TAB( 13);A(SI(I,1),51(I,2)):
2905 FFIINT TAB( 21):C(S1(I,1),S1(I,2)): TAB( 26)
2910 | = E(SI(I,I),S1(I,2)) * A(SI(I,1),S1(I,2))
2%20 IF .l > 0 THEN 2950
29:0 FRINT "DIMMMY"
2940 GOTG 2970
2950 x0 = x0 + .1
2960 FRINT .-I
2970 NEXT I
2980 FFIINT
2990 FRINT "TOTAL EOST OF EOLUTION: ";XO
3000 FRINT
3010 FFINT
3020 FFINT "[OG YOU WANT TG FE-FIUN THIS"
3030 FRINT "PROGRAM WITH NEW DATA (Y/N) ";
3040 INFUIT XO$
3050 IF XO& = "Y" THEN 50
306O END
```


Option

If you want to avoid using INPUT statements for data entry, you can change the program to read input from DATA statements. This is especially useful if you intend to enter a large transportation problem, or if you want to run the program repeatedly with slightly different data without reentering the supply, demand and cost figures. Modify the statements below to allow for this feature.

```
151 REM THIS LATA SHOWN TO SOLVE FFOELEM #!.
152 FEM FUIT YOUF SIIFFLY DATA HEFE.
15% [ATA 65,150,80
160 FEAL E(F,1)
165 FRINT S(F,1)
170S(F,1)=S(F,1)
180 T1 = T1 + S(R,1)
190 NEXT R
200 T2 = 0
210 FEM FEALI DATA LIST DF DEMANLI FFOM
215 FEM EACH DESTINATION
2% FOF F = 1 TO [1.
OO FRINT "DEMANG FFOM DESTINATION ":F:" ":
231 REM FIIT DEMANI DATA HEFE.
22 DATA 100,45,90,60
240 FEAD [(F,1)
245 FRINT IM(F,1)
250 D(R,2)= D(R,1)
260T2 = T2 + [(F;1)
270 NEXT R
ZGO FEM LOOF TO READ TFANSFORTIUN GOSTS
290 FRINT "TRANEFORTATION GOETE: "
OO FOF F = 1 TO S2
3 1 0 ~ F E M ~ I N I T I A L I Z E ~ E L E M E N T S ~ F ~ S I ( ) ~ A R F A Y ~
320 S1(R,1)=0
30 31(F,2)=0
```

```
340 FOR K = 1 TO D1
BEO FRINT "FFOM SOURUE ":F゙夕" TG DESTINATJON ":&゙g" ";
S1 REM FUT TRANSFORTATION GOST DATA HEFE.
```



```
360 READ E(RっK)
365 FRINT C(F,N)
SO NEXT K
90 NEXT R
```

Also delete lines 2980 through 3060.

References

Chase，Richard B．，and Aquilano，Nicholas J．Production and Operations Management．Homewood，Ill．： Richard D．Irwin，Inc．， 1977.

Levin，Richard I．，and Kirkpatrick，Charles A．Quantitative Approaches to Management（3rd ed．）．New York：McGraw－Hill， 1975.

Swedish Machine (Queuing Theory)

This is the classic problem where you have X repairmen servicing Y machines. The machines are statistically identical. Their times-to-failure follow the exponential law, characterized by the mean time-to-failure. The repairmen are also statistically identical; their repair completion times follow the exponential law and are characterized by its expected value. All elements are mutually independent.

This program is especially useful in that it can provide a cash flow analysis that can help project the feasibility of a particular machines-to-repairmen ratio, given the repairmen's wages, machine revenue, and overhead costs.

To use the program, enter the number of machines, the mean time-to-failure for a machine, the number of repairmen, and the mean time to repair a machine. You may use any time unit base you wish, as long as you use the same time units throughout the program. A variety of system characteristics are output. If you choose to obtain a cash flow analysis, you must also enter the cost for one repairman per unit of time, the cost of possessing a machine (overhead) per unit of time, and the amount of revenue produced by a machine per unit of time. You may use any monetary unit you wish (pennies, dollars, thousands of dollars, pesos, whatever).

Example

Ace Laundromat has a total of 50 machines operating throughout the city. The machines have a mean time-to-failure of 300 hours, and there are currently three repairmen. Each repairman requires 24 hours to repair a machine. At any time, how many machines can be expected to be operating? How many machines are being repaired? How many are waiting to be repaired? What is the mean down time per machine? How many repairmen are idle? Repairmen cost $\$ 5.25$ per hour (including fringe benefits, and so forth). Cost of possessing a machine is the overhead involved, such as lease or purchase payments, insurance payments, pro-rated administrative expenses, depreciation expense, and so forth. In this example the cost of possessing a machine is $\$ 36.00$ per month, or $\$ 0.05$ per hour. What cash flow do the machines generate if they each produce revenues of $\$ 0.50$ per hour?

Answer: 37 machines can be expected to be operational at any time, three are being repaired, and ten are waiting to be repaired. The mean down time per machine is about 105 hours. The 50 machines will produce an average revenue of $\$ 0.268843$ per hour.

EWEDTSH MACHINE

```
INFIT THE NIMBEE OF MAGHINES:
GOUNT MUST EXCEELI ONE. ?SO
INFITT MEAN TIME-TO-FAILURE
FOR A MACHINE OOOO
INFUT NUMEER DF FEFATFMEN OE
INFIT MEAN REFAIF TJME (FEF MAEHINE)
FOR A FEFATRMAN %%4
THE SYSTEM IF SAID TO EE IN STATE ,
IF I MACHINES AFE IN A FATLED
GONLITION. THE ETATIONAFY PFOEABTLITY
IISTRIBUTION QVEF THE FOSSIBLE STATES,
O THFU SO, AND OTHEF OHAFALTEFISTILS
OF INTEFEST, FOLLIOW.
```

ETA	E FFOEA- NO.		$\begin{gathered} \text { NW: } \\ \text { MAOHNE } \end{gathered}$	$\begin{gathered} \text { NO } \\ \text { FEFATMEN } \end{gathered}$
	IFEF	ATINE	WAITINE	1 [ILE
0	1.96EEOS	50	0	$\%$
1	$7 ヶ \% E-0 \%$	49	0	2
2	. 01591	48	0	1.
3	- 0197	47	0	0
4	- 02461	46	1.	0
5	. 030285	45	2	0
6	- 03645	44	3	0
7	. 042645	43	4	0
8	. 045	42	5	0
9	- 05476	41	6	0
10	- 0597	40	7	0
11.	- 06871	39	8	0
12	- 06426	8	9	0
13	- 067312	37	10	0
14	. 066414	± 6	11	0
15	- 06375	3	12	0
16	- 056507	34	13	0
17	- 0589	3	1.4	0
18	. 047479	3	15	0
19	.040515	31	1.6	0
20	-08849\%	80	17	0
21	- 026794	29	18	0
2	.020721	-	1%	0
\square	- 015471	27	20	0
24	-01113\%	20	21	0
2	7.72EE-6\%	25	22	0
二6	ㅌ, $149 \mathrm{~F}-\mathrm{O}$	24	2	0
27	3 295E-0\%	2 z	24	0
$\underline{8}$	2021E-03	2	2	0
29	1.16EE-08	21	26	0
0	$6.64 E-64$	20	27	0
31	$\because \square .54-04$	19	-	0
2	1.79E-04	18	29	0
9	З6E-05	17	30	0
84	$3 \sim 9 E-05$	16	31	0
5	1.7E-05	15	3	0
36	7E-O6	14	8	0
97	2E-06	13	84	0
8	$1 E-06$	12	35	0
9%	0	1. 1.	36	0
40	0	10	87	0
41.	0	9	8	0
42	0	E	8%	0
43	0	7	40	0
4.4	0	6	41	0
45	0	5	42	0
46	0	4	43	0
47	0	3	4.4	0
48	0	2	45	0
49	0	1	46	0
50	0	0	47	0

TU ■NTTNUE，FFESE FFETUFN゙ヲ

GYTEM GHAFAMTEFIETIG
NII IF MATHINES＝ 50
MEAN TIME－TE FAILUFE FEF
MAIHTNE $=Z O O$ TIME LNTTS
NG：EF FEFAIFIENT $=\Xi$
MEAN FEF＇AIF－TIME FEF
FEFATFIMN＝$\because=2$ TME UNITS
NIG IF WACHTNES FEF FEFATFMAN＝$=16 \Leftrightarrow 66 G 7$

FFOBABTLITY（SEFUTWE GYGTEM
$I S E M F T Y)=1.96 E-0 Z$
FFOEAETLITY（NO MAOHINE
AFE WAITTNG FGF GEFVIEE $=.0449067487$

EXF：NO：GF MAEHINES OFEFATINE

$$
=37.0376
$$

EXF NO：IF TNAETTVE MACHINES

EXF，NÖ GF MAGHINES IN WATTINE LINE $=9.99 \%$
EXF，NI：IF MATHINES IN A NON－EMFYY
\because WATTINE LINE $\quad=10.46 .944 \%$
MEAN IUINNTIME FEF
MALHINE＝$=104.9 \% 91$ TIME LNIT
MEAN WATTING TIME FEF
MAKHINE＝EO， $9 \% 9$ TIME INNTS
EXF，NW＂GF FEFATFMEN IGLE＝OEGOE

T世 FINTINUE，FFESE FETUFN＊
$\because G E F F I T E N T$ OF LOES FOF NALHINES＝ FFAGTIMN UF TTME A MAUHTNE IS GUWN＊ AS A GONSEOUENGE DF THE SYSTEM UHAFAGTEFTSTIUE＝ $19 \% G E$
$\because G E F T G E N T$ IF LISE FOF FEFAIFMEN $=$ FFAGTIGM GF TIME A FEFATFMAN IS IILE AG A GONEEGIENGE MF THE SYSTEM UHAFAGTEFIETIUS＝w12于2E

TYFE \perp FIF OASH FLDW ANALYETE \geq TO HALT
$\because 1$
THIS ANALYSIS ASSLMES THAT FEFAIFMEN AFE FAII＊A＂MINETAFY LINITE FEFE INIT
TIME，THAT THE FIXED GOGT MF FGSEESGING
EAEH MAWHTNE IS＊E＊MONETAFY UNITS FEF
UNTT TTME，ANII THAT A MAGHINE，WHEN
IFEFATING，IS GAFAELE OF FFOMUIING $\because \because$ UNITE IIF FEVENIE FEF INNIT TTME：

INFIIT THE FEFAIFMAN－GIST FEF INTT TIME，

INFIT THE FIXED EOGT FEF UNIT TTME
$\therefore B \circ$, IF FGEESEING A MAGHTNE
$\because E=\because 0$

INFIT THE AMOUNT DF FEVENIE A WWFYING
MAOHINE FFOLUIEE: FEF INNTT IF
(IFEFATTMG) TIME
$\because \because=O$

THE AVEFAKE GASH FLGN GENEFATEI BY THE
GIMEINATIMN GF SO MAOHINE (S)
MATNTATNEI BY 3 FEFATFMEN
IS - $26 G 4 马$ MUNETAFY UNTTE,
FFF: IINTT TTME:

Practice Problem

In the above example, suppose Ace invested $\$ 65.00$ per machine to retrofit them with heavy duty motors, raising their mean times-to-failure to 305 hours. What cash flow will the machines produce? How much time must pass before Ace has recovered their $\$ 3,250.00$ investment?

Answer: If retrofit, the machines will produce an average revenue of $\$ 0.525136$ per hour. The investment will be recovered within 18 months.

Program Listing

```
10 FRINT "SWEחISH MACHINE"
15 DEF FN F(X) = INT (X*1EG + S) / 1EG
OO FEM -- EHANGE IIMENEION OF Q() TO
25 REM -- MAXIMUM NUMEER OF MACHINES + 1
OO [IM Q(100)
40 FRINT
EO FRINT "INFUT THE NUMBEF OF MALHINES;"
5 5 ~ F R I N T ~ " G O U N T ~ M U S T ~ E X I E E E I ~ O N E . ~ " ; ~
GO INFIIT N
70 FRINT "INFUIT MEAN TIME-TO-FAILURE"
75 FRINT "FOR A MACHINE ":
BO INFUIT FI
90 F=1 / F1
100 FRINT "INFIIT NUMEEF IF FIEFAIFIMEN ":
110 INFIIT M
120 FRINT "INFUIT MEAN FEFAIF TIME (FEFF MADHINE)"
125 FRINT "FOR A FEFAIRMAN ";
130 INFUT F:I
140 R = 1/F1
150 FRINT
160 FEM --- INITIALIZE VARIAELEE
170 FOR I = 1 TON + 1
180 O(I) = O
190 NEXT I
200 E(1) = 1
210 E1 = 0
220 E2 = 0
```

```
230 E3 = 0
240 FO = 0
2SO FEM -- LOOF TG EALIULATE FFOBAEILITIES
25 FEM -- FOR EADH MACHINE
260 E = 口(1)
270 FOR , = O TON - 1
200 FEM -- K=MIN(.1+1,M)
200 K = M
300 IF ! + 1 > N THEN 320
310k= + + 1
```



```
305= S + 0(1 + 2)
340 NEXT .l
50 IF Q(1) < > 1 THEN EEO
360 Q(1) = 1/E
370 GOTO 260
3 6 0 ~ F F I I N T
990 FFINT "THE EYETEM IF EAID TO EE `IN STATE .-*"
3%S FRINT "IF ,I MAEHINES ARE IN A FAILEI"
40O FFINT "GONLITION. THE STATIONARY FFOBABILITY"
405 FRINT "DISTRIEUTION IVER THE FOSSIBLE STATES,"
410 FFINT "O THFiL ":N:", AND OTHEF CHAFALTEFIETICS"
420 FRINT "OF INTEFEST, FOLLOW."
430 FFRINT
440 FFIINT "STATE FFOEA- NO. NO. NO."
445 FRINT " EILITY MALHINES MACHINES REFAIRMEN"
450 FFINT " OFEFATING WAITINGO IDLE"
460 FOR .I = 1 TO N + 1
470 O=N -.1 + 1
480 W=.1 - M - 1
490 IF W > O THEN 520
5 0 0 ~ W = 0
51O FO= FO + Q(,1)
520 I = M - . I + 1
5 3 0 ~ I F ~ I ~ \% ~ 0 ~ T H E N ~ 5 5 0 ~
```



```
550 IF I < M THEN 570
560 I = M
570 FFINT .- - 1; TAB( 5); FN F(0(1)); TAB( 15);口; TAB( 24);W;
TAB( 3%):I
580 E1 = E1 + W * Q(.1)
590 E2 = EZ + I * Q(.I)
600 ES = ES + D * Q(.)
G10 NEXT .1
620 FFINT
GO FRINT "TG EONTINUE, FRESS *RETUFN*";
&40 INFUT Z$
60 FRINT
66O FRINT TAB( E);"SYSTEM CHARALTERISTICS"
```



```
GBO FRINT "NO. OF MACHINES = ":N
690 FRINT "MEAN TIME-TG FAILURE FEF "
65 FFINT "MALHINE = ":F1;" TIME UNITS"
700 FRINT "NO. DF FEFAIFMENT = "; FN F(M)
710 FFINT "MEAN FEFAIF-TIME FEF"
```

```
1120 FRINT "INFUIT THE AMOUNT OF FEVENIEE A WORKING"
1130 FFINT "MACHINE PROD|IEES, PER UNIT OF"
1135 FFINT "(OFEFATING) TIME"
1137 FRINT "E" = ";
1140 INFUT E:
1150 FRINT
1160 D=E*ES - A*M - B *N
1170 FRINT "THE AVERAGE EASH FLDW GENERATED BY THE"
1175 FRINT "GOMEINATION OF ";N;" MACHINE(S) "
11EO FRINT "MAINTAINEI BY ":M"" REFAIR":
1190 IF M > 1 THEN 1220
1200 FRINT "MAN "
1210 GOTG 1230
1220 FRINT "MEN "
12BO FFINT "IS "; FN Fi([I):" MONETAFY UNITS,"
1240 FFINT "FEF LINIT TIME."
1250 ENI
```


Markov Analysis

This program calculates the future changes, over time, in a given variable based on its current movement. Management scientists adopted this analysis, using it mostly as a simulation technique for analyzing competitors in the marketplace. Markov analysis has many other applications, however, as illustrated by the examples below.

To use the program, first enter how many states of nature are under consideration. The second entry is optional. If you want to see changes occur over time from stage to stage, you must enter the current population proportion vector. If you are only interested in long-run steady-state equilibrium, the program will seed the vector with equal probabilities. The number of elements in this vector equals the states of nature.

The program then asks you to enter each cell of the transition probabilities matrix ($\mathrm{N} * \mathrm{~N}$, where $\mathrm{N}=$ states of nature). For each cell, enter a transition probability, ranging $0<=p<=1$. The sum of the probabilities entered for each row should always add up to 1 . Once you have entered the entire matrix, you have the option of looking at each future period or letting the computer calculate the transition matrix at equilibrium.

The program displays the equilibrium vector, the period at which equilibrium was reached, and the first passage times for each state of nature. First passage times will not print for recurrent or nullrecurrent states.

Program Notes

This program allows for a maximum of 12 states of nature. You can change this by modifying line 20 as follows:

$$
20 \text { DIM V1(I), T(I,I), V2(I) }
$$

Replace I with your maximum (for example, 15,20 , or 25).
If you have large matrices to enter, or if you want to repeatedly run this program with mostly the same data, you can modify the program to accept data through DATA statements, as shown in the "Option" section.

Example

Caffrey's Hardware wants to analyze its accounts receivable in order to estimate its cash flow from credit customers. The company has three aging categories: current, 45-89 days, and 90-plus days past due. Customers in this last category are eventually written off as uncollectable accounts.

The latest aging analysis shows that, for each dollar of accounts receivable outstanding, $\$ 0.60$ is current, $\$ 0.33$ is $45-89$ days old, and $\$ 0.07$ is 90 -plus days old. Further analysis shows that accounts in the "current' category have a 38% chance of being paid in the next month, 45% of all current accounts will remain current, and 17% will be $45-89$ days old. Accounts in the $45-89$ days category stand a 65% chance of paying all back payments, a 25% chance of paying only the late installment, and a 5% chance of becoming 90 -plus days overdue. Of the accounts in the 90 -plus category, there is a 25% chance they will be paid and a 75% chance they will become bad debts.

The paid and bad debt categories are "absorbing" states, in that the probability of a paid item remaining paid is assumed to be 100%. The same is true for bad debts. These are called absorbing states because all accounts outstanding now will eventually be paid up or written off. How much of accounts receivable will be collected? How much will be written off?

On the printout below, the paid category and bad debt category have absorbed all outstanding debts. Caffrey can expect about 91% of his accounts to be paid, and 9% to be written off.

MAFKOU ANALYSIS

HOW MANY STATES DF NATUFE TS
IS THE FOFULATION FFOFORTION
VEGTOF KNOWN (Y/N) $\because Y$
ENTEF VETTOR ELEMENT 1 OO
ENTEF VEGTOR ELEMENT 2%
ENTEF VETTOR ELEMENT $3 ; .3$
ENTEF VECTOF ELEMENT 4 ?. 07
ENTEF VEUTOF ELEMENT 5%

ENTEF:	EIEEMENT	IN	FOW	1	OOLIMN	1	7
ENTEF	ELEMENT	IN	FiOW	1	COLUMN	2	$\%$
ENTEF	ELEMENT	IN	Fiow	1	COLIMN	3	-0
ENTEFi	ELEMMENT	IN	FOW	1.	WILIMN	4	0
ENTER	ELIEMENT	IN	ROW	1	EOLIMN	5	\%
ENTEF:	ELEMENT	IN	FIOW	2	WOLIMN	1.	. 8
ENTEF:	ELEMENT	IN	FOW	2	IILIMMN	2	7. 45
ENTEFI	ELEMENT	IN	FOW	2	WOLIMN	3	$\cdots 1$
ENTEF	ElEMENT	IN	Fiow	2	COLIMN	4	
ENTEF	ELEMENT	IN	FOW	2	COLIIMN		\%

ENTER ELEMENT IN FOW 3 COLIMN $1 \% 65$
ENTER ELEMENT IN FIOW 3 EOLUMIN $2 \quad 3.25$
ENTEF ELEMENT IN ROW O COLIMN 30
ENTEF ELEMENT IN FOW 3 EOLIMMN $4 \% .05$
ENTER ELEMENT IN FOW OOLIMN 5%
-FFGEAETLITIES LU NOT ADD UF TO $1.0-$
TRY ENTERING THE FOW AGATN.
ENTEF ELEMENT IN FOW 3 GOLIMMN 1.65
ENTER ELEMENT IN ROW 3 GOLIMN $20_{2} 25$
ENTER ELEMENT IN FOW 3 EOLUMN 30
ENTER ELEMENT IN FOW 3 COLIMN $4 \% 1$
ENTEF ELEMENT IN FOW O OLIMNN 5%
ENTEF ELEMENT IN ROW 4 EOLUMN 1725
ENTEF ELEMENT IN FOW 4 EOLUMN 270
ENTEF EIEMENT IN ROW 4 LOLIMN $3-0$
ENTEF ELEMENT IN FOW 4 EOLIMN $4 \% 0$
ENTER ELEMENT IN FOW 4 UOLIMMN $5 \% 75$
ENTEF ELEMENT IN FOW 5 COLUMN $1 \% 0$
ENTEF ELEMENT IN FOW 5 OOLIMN 20
ENTEF ELEMENT IN ROW 5 COLIMMN 30
ENTEF ELEMENT IN FOW 5 EOLUMN 4%
ENTEF: ELEMENT IN FOW 5 IOLIMN $5 \% 1$
DII YOUI WANT TO DBSEFVE EACH
FERIOI IINLEF ANALYEIS (Y/N) OY

85
.102

- 08
- 6

FOFIILATIUN FFOFOFTIGN
VEGTIF: AT FEFTGID Ξ IS:
.666

- 1841
.0599
.0102
-0772

FOFIILATIGN FF゙OFOFTIGN
VEUTMF AT FEFTOL 4 IS:
. 7801
.077
0813
$6 E-0$.
$\because 684$

FOFIIMATGN FFOFOFTIGN VEGTMF AT FEFTMI E IS: - $8 \% 1$
"61:
.0166
$\because, 1 E-0 \%$

- 0894

FOFIILATIUN FFOFOFTIUN VEGTOF AT FEFIGIG 6 IE: $\because 6704$
.027
B $\because E-0 \%$

1. $7 E-0 \%$
.0917
FOFIILATIGN FFOFOFTIGN
VEGTMF AT FEFIGL 7 IS:

- 88
.0146
4, 7E-9玉
$9 E-04$
- 09

FOFUILAT IUN FFGFWFTJWN
VEGTMF AT FEFTGI E IS: -658
$7: E-6 \%$
2 $5 E-0 \%$
$5 E-04$
4097

FOFIILATION FFIOFIFTIGN


```
.9005
4.1E-05
1.3E-0%
2E-04
.0%41
FOFULATION FFIOFORTION
VEOTOF AT FEFIOL 10 IE:
.90%
2.1E-0%
7E-04
1E-04
.0%43
FOFULATION FFIOFORTION
VEOTOR AT FEFTOL 1I IS:
.9043
1.1E-0%
4E-04
1E-04
.0944
FOFULATION FFOFORTION
VEGTOR AT FEFTOM 12 IS:
.905
6E-04
2E-04
O
.0945
FOFILATION FFOFORTION
VELTOR AT FERIOL IS IS:
.9053
4E-04
1E-04
O
.0945
FOFULATION FFOFORTION
VEGTOR AT FERTOL 14 IS:
.9056
2E-04
1E-O4
0
.0945
FOFULATION FROFORTION
VEOTOR AT FERTOL 15 IE:
.9058
1E-04
\sigma
O
.0945
```

VEGTOR AT FERTOM 16 IS:
.9058
O
O
O
.0945
FOFULATION FROFORTION
VEGTOR AT FEFTOL 17 IS:
.9058
O
0
O
.0945
EQUILIBFTUM FEAOHEG AT FEFIOLIT
VEGTOR AT EOUILIBRTUM:
.905s
0
0
O
.0%45

```
III YOU WANT TO RE-FIUN THIS FFOGRAM
WITH DIFFERENT DATA \((Y / N) ? N\)

\section*{Practice Problems}
1. A survey by Hanley, Ohio, city planners shows recent commuting trends. Citizens were polled to find out if they carpool, take the bus, or drive alone to and from work. Presently, \(43 \%\) of commuters drive their cars alone, \(30 \%\) carpool and \(27 \%\) take the bus to work. The city wants to know how these patterns will change over the coming months in order to increase or decrease their bus fleet. The survey shows that \(65 \%\) of those who drive alone will continue to do so. Twenty percent of this group said they would carpool, and \(15 \%\) would take the bus if gas prices continue to rise. Twenty-five percent of carpoolers say that they find driving alone is preferable, and that they will switch back to it. Fifty-five percent of carpoolers say that they will continue to carpool, and the remaining \(20 \%\) will switch to the bus.

Twelve percent of bus riders will switch back to driving alone. Thirteen percent of bus riders say they will switch to carpooling, and \(75 \%\) say they will continue to ride the bus. What will the commuting mix be six months from now? What will it look like at equilibrium?

Answer: In the sixth month, \(33.5 \%\) will be driving alone, \(26.66 \%\) will be carpooling and \(39.86 \%\) will be taking the bus. At equilibrium, \(32.86 \%\) will be driving alone, \(26.4 \%\) will be carpooling and \(40.83 \%\) will be riding the bus.
2. Rita's Rent-A-Car competes with two other rental agencies at Manteca Airport. In the past month, Rita's kept \(85 \%\) of its customers from the previous month, lost \(5 \%\) of its business to Competitor A, and lost \(10 \%\) to Competitor B. Competitor A retained \(90 \%\) of its customers while losing \(10 \%\) to Competitor B. Competitor B retained \(75 \%\) of its customers, while losing \(15 \%\) to Competitor A, and \(10 \%\) to Rita's. What are the equilibrium market shares, assuming no known proportion vector? How long, in months, does it take for a customer to return to Rita's to rent a car after having taken his/her business elsewhere?

Answer: Equilibrium shares: Rita's, 19.1\%; Competitor A, \(52.45 \%\); Competitor B, 28.63\%. On the average, it takes about 5.2356 months for a patron of either competitor to switch to Rita's.

\section*{Program Listing}

10 FEM MAFFOV ANALYEIE
20 IIM V1（12），T（12，12），V2（12）
OO FEM VI（ ）＝FWFIILATIUN FFOFOFTIUN VELTEF
40 FEM T（）＝TFANETTIGN FFIEABTLITIES MATFIX
50 FEM VZ（）＝OLFATEH FWF VETTGF AFFAY

70 FFINT＂MAFK゙GU ANALYGIG＂
EO FFITNT
\(90 N=1\)
100 FFTNT＂HOW MANY ETATES DF NATIFE＂：
110 INFIIT 5
12O FFINT
ISO FFINT＂IE THE FOFUILATIGN FFOFOFTIMN＂
13 FFINT＂UEETOF FNOWN（Y／N）＂：
140 INFIIT A
150 IF A家＝＂Y＂THEN 2 O
160 IF A 6 －\(\Rightarrow\)＂N＂THEN 130
170 FEM IF VEGTOFR INFKNWN．AGGTGN EEIAM
175 FEM FFIOBAETLITIES TU EAEH STATE
160 FOF \(I=1\) TE
\(1 \%\) VI（I）\(=\mathrm{FNF}(1 / 5)\)
2OO NEXT I
\(\because 10\) GOTG 20

2 OO FFINT
240 FGFi I \(=1\) TG
玉6 FFTNT＂ENTEF VEETOF ELEMENT＂：\(\% "\)＂
260 INFIIT V1（I）
270 NEXTI
EO FEM ENTEF TFANEITTUN MATFIX（I EY ，I AFFAY）
\(\because 60\) FFINT
\(30 \mathrm{FGFI}=1 \mathrm{TG} \Xi\)
\(3106=0\)


340 INFIIT T（I，．I）
zW ド＝ド＋T（I，I）
30 NEXT ．I
370 IF \(\because=1\) THEN 410

30 FFINT＂TFY ENTEFINE THE FIOW AGAIN＂＂
400 GITG 310
410 FFINT
\(4 \%\) NEXT I
430 FFINT＂［II YOII WANT TO GESEFVE EAGH＂
440 FFINT＂FEFTOII INIEF ANALYETS（Y／N）＂\％
450 INFIIT A＊
460 IF Aक \(=\)＂Y＂THEN 4EO
470 IF \(A\) क « \(\quad\)＂N＂THEN \(4 O\)
\(4 E\) FEM LOIF TO MLILTFLY VEGTEF（VI）EY
45 FEM TFANEITJ ON MATEIX（T）
\(490 N=N+1\)
\(500 \mathrm{FWFE} I=1 \mathrm{TG}\)
```

E10 VZ(I)=0
\#O FOF , | = 1 TU S
FO FEM ALIM MLILTIFLIED EOLLINNS TG V% AFFAY
540 VZ(I) = VZ(I) + FNF(VI(,I) * T(,I,I))
ENO NEXT .I
FGO NEXT I

```

```

50% IF A\$ < % "Y" THEN 6こO
FO% FFINT
GO0 FFTNT "FOFW|ATIUN FFWOWFTUGN"
G10 FFINT "VEGTMF AT FEFTMI ":N:" IS:"
60 NJ=0
60 FOF I = 1 TOM
<40 IF A\$ < % "Y" THEN 6めO
GO FFINT VZ(I)
@O IF V2(I) < % VI(I) THEN \&GO
60 N1=N1 + N 1
6O VI(I)=V2(I)
6% NEXT I
700 IF NI \& % S THEN 4EO
710 FEM FFINT EOUILIEFTUM VEITGF VALIIEG
7% FFINT
7O FFINT "EOUILIEFIMM FEAEHED AT FEFIGM "\#N
740 FFINT "VEGTOF AT EOUILIEFTUMM:"
7GO FWFG I= = TGS
760 FFINT FN Fi(UI(I))
770 NEXT I.
7EO FFINT
7O FEM FFINT TFIANFITIGNS NEELIELIFOF
GOO FEM EALH STATE TO EE FEGIGUIFIEI
\#10 FGFI I= 1. TG S
EO IF T(I,I)=1 UF VI(I) " = O THEN EGO
B40 FFINT "FIFIGT FASSALE---GTATE ";I;": ";
EW FFINNT FN Fi(1 / VI(I))
EO NEXT I
GO FFINT "LII YOI| WANT TOM FE-FUNN THIS FFOMFAM"
EO FFINT "WTTH IIFFEFENT IATA (Y/N) "%
O%O JNFHT A*
\#OO IF Aक = "Y" THEN EO
910 TF A\$ % % "N" THEN E70
\#O ENII

```

\section*{Option}

If you plan on entering large matrices, or if you want to run this program repeatedly with the same data, you should use this option. The program will read input from DATA statements, rather than asking you to enter the population proportion vector and the transition probabilities matrix. Replace lines 170 through 350 with the lines shown below. Also delete lines 870 through 910 , and leave line 920 where it is. If you plan to re-run the program without entering the population proportion vector, you must delete lines 242 through 249 if they contain DATA statements for a population proportion vector from a previous run.
```

170 REM IF VEGTOR UNENOWN, AGEIINN EOUAL
173 FEM FFOBABTLITIES TG EALH ETATE
175 REM IF UNKNOWN, YOUI MUST LELETE
177 REM LINES 242-249 OF THE DATA WILL
17G FEM BE OUT OF SEOUENCE.
180 FOR I = 1 TGE
190 V1(I) = FN F(1 / S)
200 NEXT I
210 GOTO 200
2O FEM LOOF TU FEAL FOFULATION FROFORTIONE
20 FFINT
240 FOF I = 1 TGE
241 REM FUT FROFORTION VEOTOR ELEMENTE HEFE
242 [IATA 0, ,6,.35,007,0
2SO FFINT " VEOTOR ELEMENT ";I:": ";
20% REAI VI(I)
265 FRTNT VI(I)
270 NEXT I
2BO REM FEAL TRANEITION MATRIX (I BY .I ARRAY)
290 FFINT
300 FOF I = 1 TO S
310 K=0
32O FOF .1 = 1 TO S
Z2 FEM FUIT TFANGITIUN FFOBABILITIES MATFIX HEFE
E2 DATA 1,0,0,0,0,.3E, 45,.17,0,0, 65,,25,0, 05,0
\#2 DATA .65, 25,0,.1,0, 25,0,0,0,.75,0,0,0,0,1
SO FRINT " ELEMENT IN FOW ":I;" GOLUMN";" ";,|" ":
34 REAL T(I,.1)
345 FRINT T(I,.l)
EOK= \& + T(1, 1)

```

\section*{References}

Cabot, A., Victor, and Harnett, Donald L. An Introduction to Management Science. Reading, Mass.: Addison-Wesley, 1977.
Levin, Richard I., and Kirkpatrick, Charles A. Quantative Approaches to Management (3rd ed.). New York: McGraw-Hill, 1975.

\section*{Nonlinear Break-even Analysis}

This program computes the break-even point of a product using a nonlinear method which more closely reflects actual production situations than a linear method. It incorporates a 'learning curve" for both costs and prices. This curve means that each time production or sales double, cumulative average costs or revenue per unit will increase or decrease by the amount of the curves. Zero curve values means no change occurs. When you enter different curve values for costs and prices, the program indicates the point of maximum gross profit.

To use the program, enter the unit selling price, the selling price learning curve, the variable costs, the variable costs learning curve, and the fixed costs. Variable costs are those which can be directly ascribed to the production of each unit, such as raw material. Fixed costs, like rent and wages, generally do not vary with each unit produced.

\section*{Example}

Acme Widget Supply is considering producing and marketing a new widget. New machines, employee training, and all other overhead costs associated with production of this widget total \(\$ 10,000\). Each unit produced requires \(\$ 5.00\) of raw materials, labor, machine depreciation, and so forth, but they will need proportionally more machines and personnel to produce more widgets, and will therefore use a \(5 \%\) cost increase learning curve. The marketing department expects the selling price of \(\$ 25.00\) to decrease on a \(5 \%\) curve. What is the break-even point on the new widget? What is the maximum gross profit margin that Acme may realize? What are total costs and total revenue at maximum gross profit?

Answer: Break-even will occur at 1,663 units. The maximum gross profit margin is \(17.182 \%\). Total costs and revenue at maximum gross profit are \(\$ 74,134.00\) and \(\$ 89,514.00\), respectively.

\section*{BREAKEVEN ANALYEIS}

ENTER THE LNIT FFILE 2 E
ENTER THE UNIT FFIGE EFOEION FATE
(NEGATIVE VALIIE MEANS REVENIEE
DEGREASES AS SALES INGREASE)?-5
```

ENTER THE AMOUNT OF VAFIABLE OUSTS FEF
INNIT ?S
ENTEF VAFIABLE EOSTE LEARNING RATE (NEGATIVE VALUE MEANE GOSTE DEGREASE AS FRODUGTION DOUBLES) 95

```

ENTEF THE TOTAL AMOINT DF FIXED EOSTE 10000

BREAKEVEN FOINT \(=1663\) UNITE
TOTAL REVENIIE AT BREAKEVEN \(=\$ 24015\)
```

MAXIMUM GROSS FRGFIT MARIGIN AT GESG
UNITS = 17.1E2%

```

TITAL REVENIE \(=\$ 8951.4\)
TOTAL GOSTS = \(\$ 74134\)

TOTAL FROFIT \(=\$ 15890\)
WOULI YOU LIKE TG FE-FUN THIS FROGFAM WITH NEW LATA (Y/N) TN

\section*{Practice Problems}
1. The selling price is \(\$ 30.00\), and revenue will decrease by \(2.5 \%\) each time production doubles. Variable costs are \(\$ 1.20\) per unit, but cumulative average costs will increase by \(8 \%\) when production quantities double. Fixed costs are \(\$ 180,000.00\). What is the break-even point? What is the maximum gross profit margin?

Answer: Break-even at 9,945 units, maximum gross profit margin of \(71.185 \%\) occurs at 246,752 units.
2. With a unit price of \(\$ 19.95\), variable costs of \(\$ 4.75\), and fixed costs of \(\$ 6800\), how many units must be sold to break even? (No price or cost changes will occur. Use curve values of zero for both revenue and costs.)

Answer: Break-even at 447 units.

\section*{Program Listing}
```

1O FRINT "BREAKEVEN ANALYSIS"
20 FEM --- THESE FUNGTIONE GOMFUTE THE GURVATURE
OOEF FN A(X)=- LIG (1 + (X / 100)) / LGG (2)
40 DEF FN E X) = LOG (1 + (X/100))/LEG (2) + 1
5 0 ~ D E F ~ F N ~ E (X) = ~ I N T ~ (((T 1 ~ - ~ T 2) ~ / ~ T 1) ~ * ~ 1 E S ~ + ~ 0 , 5) ~ / ~ 1 0 0 0 ~
6 0 ~ F F I N T ~
7O FRINT "ENTER THE UNIT FRILE ":
EO INFUT U
90 FRINT "ENTER THE UNIT FRILE EFOSION FATE "
100 FFINT "(NEGATIVE VALUE NEANS FEVENUE"
105 FFINT "DEGFEASES AS EALES INGFEASE)":
110 INFUTT LI
1 2 0 ~ A 1 = F N ~ A (L I)
130 B1 = FN E(L1)
140 FFINT
15O FRINT "ENTER THE AMOUNT OF VARIABLE EOSTS FER"
155 FFINT "UNIT ";
160 INFUT V
1.70 FFTNT "ENTEF VAFIABLE EOSTS LEAFNING FATE"
1BO FRINT "(NEGATIVE valuE MEANS LOSTS DEGREASE AS"
1ES FRTNT "FRODUTTINN DOUBLES) ":
1%0 INFUT L2
200 A2 = FN A(L2)
210 B2 = FN E(L2)
20 FFINNT
2O FRINT "ENTEF THE TOTAL AMOUNT OF FIXEI"
2SS FRINT "GOSTS ":
240 INFUT F
250 FFINT
OO FEM INITIALIZE LAST GUESS, LOW GUESS, HIGH GUESS
270 ■ = 0
290 L = 1
290 H = 1E4

```
```

OO FEM GALGULATE FQINT USING BTNAFY EEAFOH
300 E = INT ((L + H) / 2)
OO FEM IF NEW FOINT = LAST DUESS, EXIT
30 IF E = G THEN 480
340 FEM SET LAST GUESS TO NEW FOINT
850 % = B
OO FEM EALIULATE TOTAL. FEVENUE ANI
365 REM TOTAL EOSTE AT DUANTITY E
70 T1 = JNT ((U * E * E1) + O.5)
30T2 = INT ((V*B * B2 + F) + 0.S)
OO FEM BREAKEVEN FGINT FOUND IF TOTAL
SG FEM REVENUE = TOTAL COETS
400 IF T1 = T2 THEN 4BO
4O FEM AD,UST GUESS HTGH DF LOW FOINTS, TEY AGAIN
420 IF T1 ` TE THEN 45O
430 L = B
440 G070 310
450 H= B
4%0 GOTG 310
470 FEM BREAEEVEN FOINT FOUND, GUTFUT FESUL..T
480 FRINT "EFEAKEVEN FGINT = "\&E"" UNITE"
490 FFINT "TOTAL FEVENDE AT BFEAKEVEN = $":T1.
EOO FEM USE THIS SEUTION IF FIGLFES ARE LINEAF
5 1 0 ~ I F ~ L 1 ~ < ~ \% ~ L ? ~ T H E N ~ 5 7 0 ~
5%O FRINT "GOETE AND REVENIEE ARE LINEAR."
SO FFINT "NO MAXIMUM GFOGS FFOFIT MAFGEN FOGSIELE"
5 4 0 ~ ज 0 T O ~ 6 \% 0 ~
SEO REM GUTFUT MAXIMUM GFGSS FROFIT
5 5 S ~ F E M ~ M A F G I N ~ D A T A ~ F O F ~ N O N - L I N E A R ~ V A L I U E S ~
SOO FEM (SETF THIS SEGTIUN IF FIGURES ARE LINEAF)
STO E = INT (EXF (LOG ((F % (A1 - 1)) / (V * (AC -- A1))) /
 (1 - AZ)) + O.S)
5BOT1 = INT (U*E = BJ)
590 T2 = INT (V*E*B2 + F)
600 FFIINT
GIO FFTNT "MAXIMUM GFOSS FFOFIT MARGIN AT ":B
6%O FRINT "UNITE = "; FN E((T1 - T2) / TI):"%"
6 3 0 ~ F F I N T ~
640 FFRNT "TOTALL REVENIEE = क":T1
650 FFINT "TOTAL EOSTS = *"T2
6%O FFINT
67O FFINT "TOTAL FROFIT = क":T1 - TE
6O FFINT
690 FRINT "WOULD YOU LIKE TO REFFIUN THTS FROGRAM"
655 FFINT "WITH NEW LIATA (Y/N) ";
700 INFUIT Z多
710 IF Z$ = "Y" THEN 6O
7%0 IFF Z\$ < > "N" THEN 6EO
750 ENL

```

\section*{References}

Solomon and Pringle. An Introduction to Financial Management. Santa Monica, Calif.: Goodyear Publishing Company, 1977.
Texas Instruments. Programmable 58/59 Calculator Business Decisions Library, Part number 1014984-9.

\section*{Payoff Matrix Analysis}

This program evaluates a set of alternatives, each of which has some measurable benefit, or "payoff," subject to varying states of nature. Under different conditions, payoff amounts could be large or they could become losses. To analyze payoffs in conditions of uncertainty, this program employs three criteria: "maximax" (find the alternative with the highest possible payoff), "maximin"' (the best alternative under the worst case), and "minimax regret" (the alternative which minimizes opportunity cost).

To use this program, you should carefully consider your alternatives. They must relate to one another (for example, you have \(\$ 20,000\) and you want to know which of four types of investments is optimal to make, given varying states of the economy). You must be able to "guesstimate" what the payoffs will be (positive, negative or zero) for each alternative under each state of nature, as well as the probability of each state of nature's occurrence.

The computer will ask you how many states of nature to consider and how many alternatives exist. Then you will enter the payoff matrix row by row, starting with action 1 under state 1 , action 2 under state 2, and so on. After you enter the matrix, you will input the probabilities of each state of nature. These probabilities are mutually exclusive, and they must add up to 1.0. The computer will ask you to reenter them if they do not add up to 1.0.

The program shows you what choices are best under the maximax and maximin rules. The computer will optionally display the regret matrix. The optimal maximin regret choice displays, followed by the expected payoff values of each alternative.

\section*{Program Notes}

The program allows for ten states of nature and ten alternatives. You can change this by modifying line 20 of this program as follows:
\[
20 \operatorname{DIMS}(\mathrm{~N}, \mathrm{~A}), \mathrm{M}(\mathrm{~A}), \mathrm{R}(\mathrm{~N}), \mathrm{X}(\mathrm{~A})
\]

Replace the expression N with the maximum states of nature, and A with the maximum number of alternatives.

\section*{Example}

Fred wants to invest capital in the market. He sees his choices as stocks, Baa bonds or options. These three choices will pay off relative to how the economy behaves:

\section*{State of Economy}
\begin{tabular}{lccc} 
Investment & Recession & Stable & Inflation \\
Stocks & -20 & 65 & 200 \\
Baa Bonds & 0 & 80 & 80 \\
Options & -300 & 0 & 300 \\
Probability & 0.3 & 0.2 & 0.5
\end{tabular}

How does Fred run the program?
Answer:
```

FAYOFF OF ACTION 1 IN ETATE 1 %-20
FAYOFF OF ADTION 1 IN STATE 2 ?65
FAYOFF OF AOTION 1 IN STATE 3 %2OO
FAYOFF IF ACTION 2 IN STATE 1 %O
FAYOFF OF ADTION 2 IN STATE 2 TEO
FAYOFF OF ACTION 2 IN STATE E OO
FAYOFF OF ACTION 3 IN STATE 1 ?-300
FAYOFF OF AOTION S IN STATE 2 OO
PAYOFF DF AITION 3 IN STATE 3 %300
ENTER FROBABILITY FOR STATE 1 ?.3
ENTER PROBABILITY FOR STATE 2 ?. 2
ENTER FROBABILITY FOR STATE }3\mathrm{ ?%
MAXIMAX FAYDFF OF 3OO FFOM ACTION S
MAXIMIN FAYOFF OF O FROM AOTION 2
LO YOU WANT TO SEE THE REGRET
TABLE (Y/N) FY

STATE	1	2	3		
AOTION 1.	20	15	100	MAX	FEGRET $=100$
AGTION	2	0	0	220	MAX REGRET $=220$
AGTION	3	300	80	0	MAX REGRET $=300$

MINIMAX REGRET FAYOFF OF 100
FFOMM ACTION 1
EXFEITED VALIUES ARE:
FOR AOTION 1: 107
FOR ACTION 2: 5%
FOF AOTION :% 60
LG YOU WANT TG RUN THIS PROGRAM
AGAIN WITH IIFFEFENT IATA (Y/N) ON

```

\section*{Practice Problems}
1. A business is considering a service agreement for its computer system. The service agreement costs \(\$ 100\) per month, and covers all repairs. Because the system is five years old, it may be necessary to repair it more often than in the past. Downtime for this system can be for minor or major repairs; the minor repairs averaging \(\$ 140\), and major repairs averaging \(\$ 900\). The probability of downtime requiring minor repair is 0.07 ; for major repairs, 0.08 . What are the payoffs?

Answer: maximax payoff (cost, in this problem): \$0. Maximin payoff: \$100. Minimax regret: \$100. Expected value (cost) of service agreement: \(\$ 100\). Expected cost of no service agreement: \(\$ 81.80\).
2. A market researcher is interested in gathering responses to an opinion poll in one day. The researcher is paid for each completed survey. The number of responses depends on the weather,
as shown below:
\begin{tabular}{lccc} 
& \multicolumn{3}{c}{ Prevailing Weather } \\
\multicolumn{1}{c}{ Location } & Sunny & Cloudy & Rainy \\
Beach & 150 & 30 & 0 \\
Door-to-Door & 40 & 70 & 90 \\
Flea Market & 80 & 50 & 5 \\
Probability of weather: & 0.5 & 0.3 & 0.2
\end{tabular}

What are the optimal alternatives under each criterion?
Answer: Under Maximax, option one with a payoff of 150 ; under maximin, option two with a payoff of 40 ; under minimax regret, option three with a maximum payoff of 85 . Expected values: alternative 1,84 ; alternative 2, 59 ; alternative 3,56 .

\section*{Program Listing}

10 REM ANALYEIS IF A FAYOFF MATFIX
\(20 \mathrm{IIM} 5(10,10), M(10), \mathrm{F}(10), X(10)\)
SO FRINT "FAYOFF MATRIX ANALYEIS"
40 FFINT
50 FRINT "HOW MANY ETATES IF NATLIFE ";
60 INFUT N
70 FRINT "HOW MANY FOSSIELE ACTIONE ";
80 INFUT A
90 FRINT
\(100 \mathrm{FOF} \mathrm{Q}=1 \mathrm{TQ} \mathrm{A}\)
\(110 \mathrm{M}(\mathrm{Q})=-\) - E
120 FRINT
\(130 \mathrm{FOF} F=1 \mathrm{TG} \mathrm{N}\)
140 FRINT "FAYOFF OF AKTION ":Q\%" IN ETATE ":F;" ";
150 INFUIT S(Q,F)
160 NEXT F
170 NEXT Q
1 BO REM ENTEF FFOBABILITIEG FOR EACH
185 REM STATE DF NATURE
\(190 \mathrm{Al}=0\)
200 FRINT
210 FGF \(\mathrm{G}=1 \mathrm{TG} \mathrm{N}\)
220 FRINT "ENTEF FROBABILITY FOR ETATE ":日;" ";
230 INFIIT F1 (Q)
\(240 \mathrm{Al}=\mathrm{A1}+\mathrm{F} 1(\mathrm{Q})\)
\(250 \mathrm{~F}(\mathrm{Q})=0\)
260 NEXT Q
270 IF A1 \(=1\) THEN 330
2 EO FFINT
290 FRINT "-FFOEABILITIES [UO NOT ADLI TO 1.0-"
300 FRINT "EHELK YOUF ENTRIES AND RE-TRY."
310 FFINT
320 GOTO 190
3 OO FEM EALCULATE MAXIMAX \& MAXIMIN VALUEE
\(340 \mathrm{~A} 1=-9 E\)
350 FQR \(0=1\) TGA
\(360 \mathrm{AS}=0\)
370 REM FEFLAOE AS WITH THE HIGHEST FAYGFF
\(3 \mathrm{BO} \mathrm{FOR} F=1 \mathrm{TON}\)
```

3% IF A1 = - gE% THEN 410
400 IF S(Q,F) < = A1 THEN 480
410 A1 = S(Q,F)
420 A2 = 0
4:0 FEM FUIT MINIMIIM FAYOFF OF EACH ACTION IN M()
440 IF M(Q) = - FE, THEN 460
450 IF S(Q,F) > = M(Q) THEN 470
46O M(Q) = S(Q,F)
470 FEM EAVE HIGHEST FAYGFF FOR FEGRET TABLE
4SO IF S(Q,F) \& = F(F) THEN SOO
490 F(F)=S(O,F)
5 0 0 ~ N E X T ~ F '
510 NEXT Q
5 2 0 ~ F R I N T
SO FRINT "MAXIMAX FAYOFF OF ":A1:" FFOM AOTION ":AZ
5 4 0 ~ F R I N T
550 A1 = - 9E9
560 FOR Q = 1 TO A
5 7 0 ~ I F ~ M (Q) ~ < ~ A 1 ~ T H E N ~ 6 0 0 ~
SBO A1 = M(Q)
590 AZ = 0
600 NEXT Q
G10 FRINT "MAXIMIN FAYOFF GF ":A1:" FROM AOTION ":AZ
620 FRINT
60 FRINT "LIO YOU WANT TO SEE THE FEGRET"
65 FRINT "TABLE (Y/N) ";
640 INFUT A\$
650 IF A覀 = "N" THEN 870
6<O IF A\$ < > "Y" THEN EOO
670 FRINT
EOO FRINT "ETATE "; TAB(10);
600 A1 = 0
700 FEM FFINT HEADINGS FOR TABLE
710 FOR F = 1 TO N
720 FRINT F;" ";
730 NEXT F
740 FFRINT
750 FRINT
760 FOR Q = 1 TO A
70 FRINT "ACTION ";Q; TAB(10)
780 FEM FRINT FEGRET VALIIES
7%0 A1 = 0
BOO FOR F = 1 TO N
E10 FRINT R(F) - S(Q,F);" ";
E20 IF F(F') - E(Q,F) < = A1 THEN E40
SO A1 = F(F) - S(O,F)
E40 NEXT F
ESO FFIINT "MAX FEGRET=";A1
860 NEXT Q
B70 FOR Q = 1 TO A
8EO A1 =0
E% FOR F = 1 TO N
900 IF R(F) - S(Q,F) < = A1 THEN 930
910 A1 = Fi(F) - E(Q,F)
920 X(Q)=F(F) - S(Q,F)

```
```

GO NEXT F
940 NEXT Q
950 A1 = 0
760 FOR F = 1 TG A
970 IF F = 1 THEN 9%0
980 IF X(F) > A1 THEN 1010
90 A1 = X(F)
1000 AZ = F
1010 NEXT F
1020 FFINT
1030 FRINT "MINIMAX FEGFET FAYGFF OF ":A1
10S5 FRINT "FROM ALTION ":AZ
1040 FFRINT
1050 FRINT "EXFEGTED VALIUES ARE:"
1060 FOR F = 1 TO A
1070 A1 = 0
1080 FOR Q = 1 TO N
1090 A1 = A1 + (S(F,O) * F1(0))
1100 NEXT Q
1110 FFINT "FOR AETION ";F:": ":A1
1120 NEXT F
1130 FFINT
1140 FFIINT "DOZ YOU WANT TO FIUN THIS FROGRAM"
1150 FRINT "AGAIN WITH IIFFERENT DATA (Y/N) ";
1160 INFIIT A\$
1170 IF A\$ = "Y" THEN 40
1180 JF A早 \& "N" THEN 1130
1190 END

```

\section*{Reference}

Cabot, A. Victor, and Harnett, Donald L. An Introduction to Management Science. Reading, Mass.: Addison-Wesley, 1977.

\section*{Bayesian Decision Analysis}

This program revises probabilities (given multiple states of nature) according to Bayes's Theorem for conditional events, and further evaluates possible actions by use of a payoff matrix. This technique applies to sampling for quality based on subjective probabilities you enter.

To use this program, first enter how many possible states of nature there are; for example, an outgoing lot of products can have three possible outcomes: \(99 \%\) good, \(90 \%\) good, or \(85 \%\) good. Then enter the number of conditional actions (for example, send out the lot, send out the lot and retool machines to correct defects, or rework the lot and retool the machines). The next set of entries is the payoff matrix. You enter payoffs (or costs as negative numbers) for each action, within each state of nature. Next, enter two probabilities for each state of nature; first, the "prior'" probability that each state of nature occurs, and then the "conditional" probability based on the occurrence of that state.

To illustrate, consider the three possibilities above: \(99 \%, 90\), and \(85 \%\) good. These are conditional probabilities; in other words, " \(99 \%\) good" is a possible outcome of a production run. Therefore, if " \(99 \%\) good" is the present state of nature, then the probability of \(99 \%\) is conditional based on being in that state of nature. The 'prior"' probability is the likelihood of that state of nature's occurrence in the first place. Prior probabilities are often "guesstimates" made by production personnel, based on experience.

The last two entries are the size of the sample in question and the actual number of "successes" in the sample taken. In the example above, you may have looked at 50 pieces out of an outgoing lot of 1,000 , and you find that five of them are defective. Enter 50 as the sample size, and five as the actual number of successes. The program then prints the expected values of each action, based on revised probabilities. You choose the optimal action from these values, which is usually that action which minimizes costs or maximizes payoff.

After the expected values, the prior probabilities, likelihoods, joint and posterior probabilities print for each action. A final figure, the marginal probability, prints. This is the "unconditional" or expected success rate. You can go back and re-enter a new sample size (or enter zero to end the program).

\section*{Example}

The quality control department at Fergis Bolt International estimates that bolts produced fall into three categories; \(99 \%\) acceptable, \(90 \%\) acceptable, and \(80 \%\) acceptable. These three levels of quality occur 70, 20 , and \(10 \%\) of the time, respectively. Roland Fergis II wants to impress his father with a comprehensive study which documents how much the company may lose by not making the right quality control decision. He puts together a payoff matrix which looks like this:
\begin{tabular}{lccc} 
& \multicolumn{3}{c}{ Payoffs } \\
\multicolumn{1}{c}{ Actions } & \begin{tabular}{c} 
If \(\mathbf{9 9 \%}\) \\
good
\end{tabular} & \begin{tabular}{c} 
If \(\mathbf{9 0 \%} \%\) \\
good
\end{tabular} & \begin{tabular}{c} 
If \(\mathbf{8 0 \%}\) \\
good
\end{tabular} \\
\hline \begin{tabular}{l} 
Send lot out
\end{tabular} & -1200 & -1800 & -2400 \\
\begin{tabular}{l} 
Retool machines \\
without rework
\end{tabular} & -1400 & -1600 & -2200 \\
\begin{tabular}{l} 
Retool machines \\
and rework
\end{tabular} & -2000 & -2000 & -2000
\end{tabular}

The cost of producing the lot itself is \(\$ 1,200\). If the lot is sent out and the quality is less than \(99 \%\), Fergis will incur costs of returned merchandise. If they decide to retool the machines only, they will incur downtime, but the rate of returned merchandise will be lower for future lots. If the machines are retooled and the bolts are reworked, the lot will be \(99 \%\) good no matter what. Therefore, the cost
remains constant. How would Roland Jr. run this program? What will be the optimal strategy-based payoffs if 46 of 50 bolts sampled are acceptable?

Answer: The optimal strategy is to retool the machines, at an expected cost of \(\$ 1,616.75\). This sample has a \(94.8 \%\) probability of being \(90 \%\) free of defects.


ENTEF FRTOR AND UONLITIONAL FROE: :
FOF STATE 1 ? \(7.9 \%\)
FOR STATE \(2,2, \square\)
FOR ETATE 3 ?.1., 3
ENTER SAMFLE SIZE (O TO END) 55
ENTEF AGTUAL NUMBEF OF EUGEESES ?46
GIVEN 46 GITLESEES IN A SAMFLE
OF EO, THE EXFEETED VALIUES ARE:
AGTION 1: -1E09.4240
ACTIUN 2: -1616.75993
ATTION \(3:-2000\)
FFOEAETLITY FEVIETONE:
STATE FRTOR LIKELIHOOM UOINT FOGTEFTOF
\begin{tabular}{ccccc}
1 & \(\cdots 7\) & \(1 E-03\) & \(7 E-04\) & 013 \\
2 & 2 & 181 & 086 & 948 \\
\(E\) & 1 & 013 & \(1.8 E-03\) & 054
\end{tabular}

\section*{Practice Problems}
1. In the example above, is the minimum number of acceptable bolts allowable in order to send the lot out without retooling machines? At this point, what is the probability that this lot is actually \(99 \%\) free of defects? (Hint: Find the answer by trial-and-error. Enter a successively smaller number of successes until you get the answer.)

Answer: The minimum is 48 out of 50 , with an expected cost of \(\$ 1,337.59\). At this rate, it is \(77.2 \%\) likely that the bolts are \(99 \%\) free of defects.
2. In the example above, does action 3 - rework the lot and retool the machines - become optimal?

Answer: At 41 acceptable items from a sample of 50 , the cost of \(\$ 2,000\) is less than the other two
alternatives (send out lot: \(\$ 2,203.96\), send out and retool: \(\$ 2,003.96\) ). At this point, it is \(67.3 \%\) probable that the lot is \(80 \%\) good.

\section*{Program Listing}
```

1 FRINT " EAYESIAN DEGISION ANALYSIS"

```
2 PRINT
10 ПIM \(F 1(4), F 2(4), F B(4), F S(4), A(4,4), M(3)\)
15 DEF FN R \((Z 1)=\) INT \((Z 1 * 1000+0.5) / 1000\)
20 FRINT "HOW MANY STATES OF NATURE ";
30 INFIIT N1
40 FRINT "HOW MANY EONDITIONAL ACTIONS ";
50 INFIIT A1
60 FRINT
70 FFINT "ENTER FAYOFFS FOR:"
79 FEM ENTER FAYOFF MATRIX
BO FOR I = 1 TG A1
90 FOR \(1=1\) TO N1
100 FFINT "AOTION "; I;" LINDEF STATE ";,I;" ";
110 INFUT \(A(I, .1)\)
120 NEXT .
130 NEXT I
140 FFIINT
\(149 \times 0=0\)
150 FRINT "ENTER FRIOR ANL CONIITIONAL FROB.:"
160 FOR I \(=1\) TG N1
165 FRINT "FOF ETATE "; I;" ";
170 INPIT P1 (I),F2(I)
\(180 \times 0=X 0+F 1(I)\)
\(185 \mathrm{FS}(\mathrm{I})=0\)
190 NEXT I
200 IF \(X 0=1\) THEN 230
210 FFINT "FFIOF FFOBABILITIES IIG NOT EQUAL \(1.0 "\)
220 GOTO 140
250 FFIINT
240 FRINT "ENTEF SAMFLE SIZE (O TO ENII) ";
250 INFUIT 5
255 IF \(S=0\) THEN 670
260 FFINT
290 FRINT "ENTER ACTUAL NLIMEEF OF EUCLESSES ";
300 INFUIT II
301 FEM GALEILATE EXFEGTED GOST FOR SAMFLE SIZE
\(320 M(1)=5\)
\(3 \mathrm{EO} M(2)=11\)
\(340 M(3)=5-I 1\)
\(35 \mathrm{FOF} .1=1\) TO 3
360 IF \(M(.1)=0\) THEN 420
\(370 \mathrm{z}=0\)
380 FOR K \(=1\) TO M(.1)
\(390 Z=Z+\operatorname{LOG}\) (K)
400 NEXT K
\(410 \mathrm{M}(1)=Z\)
420 NEXT . 1
\(430 \mathrm{~F} 4=0\)
```

450 FOFi H = 1 TO NI
459 FEM STORE LIKELIHOOD IN FS()
460 Y = I1 * LOH (F2(H)) + (E - I1) * LOG (1 - F2(H))
465 FS(H)=FNF(EXF (M(1) - M(2) - M(3) + Y))
469 FEM STORE ,IOINT FROBABILITY IN FS()
470 FS(H) = FG(H) * F1(H)
474 FEM SUM FOINT FFOBABILITIES IN FS()
475 F4 = F4 + F3(H)
48O NEXT H
4E9 FEM GALGULATE EXFEGTED MONETAFY VALUES
490 FOF I = 1 TO A1
500 E(I) = O
510 FOF \& = 1 TO N1
520 E(I) = E(I) + (A(I,.1) * (FO(.1) / F4))
5 3 0 ~ N E X T ~ . l ~
SE NEXT I
5 4 0 ~ F R I N T
55O FFINT "GIVEN ";II:" GUCLESEES IN A SAMFLE"
560 FRINT "OF ":S:",";"THE EXFEOTED VALUES ARE:"
570 FOR I = 1 TG A1
580 FRINT "AOTION ";I;": ";E(I)
5 9 0 ~ N E X T ~ I ~
600 FRINT
610 FFINT "FFOBABILITY FEVISIGNS: "
G20 PRINT "STATE FRIOR LIKELIHOOD .NOINT FOETERIOR"
60 FOR I = 1 TO N1
640 FRINT I; TAB(7):FI(I): TAB(15):FS(I):
645 FRINT TAB(22);FS(I); TAB(30); FN R(FS(I) / F4)
65 NEXT I
660 GOTO 240
670 ENI

```

\section*{References}

Cabot and Harnett. An Introduction to Management Science. Reading, Mass.: Addison-Wesley, 1977.

\section*{Economic Order Quantity}

The purpose of this program is to determine the economic order quantity of an item. You must enter the number of available price breaks, minimum and maximum quantities and unit price for each level, the inventory holding cost as a percentage of each unit's cost, cost of placing an order (in dollars), and the annual demand quantity. The program will compute the EOQ of each price break and indicate if the quantity is within the minimum and maximum quantities for that level.

\section*{Program Notes}

It may be more convenient for you to enter holding costs as a fixed dollar amount per unit. Make these changes:
```

1 5 0 ~ F F I N T ~ " E N T E R ~ T H E ~ U N I T ~ H O L I T N G ~ E O E T " ~
15S FFINT "(\$) ";
200 H=H (100 (DELETE THIE LINE)
ZOE=INT(EOR ((2* [\# E)/H))

```

Your price breaks may be computed as a percentage discount from a fixed price. Make these changes:
\begin{tabular}{|c|c|}
\hline 60 & PRINT "ENTER THE NUMEEF OF AVAILABLE FFILE" \\
\hline 65 & FRINT "BREAKS "; \\
\hline 70 & INFUT B \\
\hline 72 & FRINT "ENTER THE EAGE UNIT PRItee ": \\
\hline 74 & INFUT U1. \\
\hline 80 & FFiINT \\
\hline 90 & FFEINT "ENTEF MINIMUM ELAANTITY, MAXIMUMV" \\
\hline 95 & FFINT "DUANTITY, 口ISCOUNT" \\
\hline 100 & FOF I \(=1\) TOB \\
\hline 110 & FRINT "AT FRIGE EREAK ": \(:\) " "; \\
\hline 120 & INFUT Q(1, I), Q(2,I), [1. \\
\hline 130 & NEXT I \\
\hline 140 & FFINT \\
\hline
\end{tabular}

\section*{Example}

Joe Blow, purchasing agent for a small manufacturer, needs to order motor armatures from a machine shop. The machine shop offers three price breaks to Joe's company: 0 to 499 units, \(\$ 5.00\) per unit; 500 to \(999, \$ 4.50\) per unit; 1,000 and up, \(\$ 3.90\) per unit. Joe's company requires 10,000 units each year. \(\$ 20.00\) in clerks' time and forms is needed to place an order. About 20\% of each unit's cost is spent on warehousing, shipping, breakage, and so forth. How many orders of how many units should be placed this year in order to minimize costs?

Answer: Joe should place 15 orders of 666 units each.

EロロNMMIに：ロFLEF GUANTITY

ENTER THE NIMEEF IF AVAILABLE FFIEE BFEAKG \(\because\)

ENTEF MINIMIM EIIANTITY，MAXIMIIM
DIANTITY，FFTIE
AT FFIIE EFEAK \(1 \quad \because 0,499,5\)
AT FRTEE BFEAK \(2 \quad 600,9 \%, 4, ~ 5\)
AT FFIEE EFEAK \(\because \because 1000,9 \% 9 \%, 3,9\)

ENTEF THE UNIT HOLIITNE EGET
（\％FEF INNTT）\(\because 0\)
ENTEF THE GOGT IF FLAEINE AN
GFOEF（专）\(O\)
ENTEF THE IEMANII DIIANTITY FEF YEAF
（0＝ENII \(\because 10000\)


ENTEF THE IEMANII QIIANTITY FEF YEAFi （O＝ENII）\(\because\)

WIIILII YOU LIドE TU FE－FWN THIS FFOMFAMM
WTTH NEW IMATAO（Y／N）\(\because N\)

\section*{Practice Problems}

1．Three price breaks：\(\$ 2.50\) per unit for 0－999 units；\(\$ 2.25\) each for \(1,000-1,999\) units； \(2,000-9,999\) units cost \(\$ 2.00\) each．Cost of placing an order is \(\$ 50.00\) ，and holding costs represent \(10 \%\) of an item＇s cost．What is the EOQ if annual demand is 5,065 units？

Answer：EOQ is four orders of 1，500 units each．
2．Four price breaks：\(\$ 89.00\) each for \(0-9\) units；\(\$ 82.50\) per unit for 10 to 19 units； 20 to 29 units are \(\$ 78.00\) each； 30 and up are \(\$ 75.00\) apiece．Cost of placing an order is \(\$ 75.00\) ．Holding costs are \(15 \%\) ．What is the EOQ if annual use is 50 units？

Answer：The EOQ is two orders of 25 units each．

\section*{Program Listing}
    FFINT "ECONOMIG QRDEF DUANTITY"
20 FEM - - IHANGE SIZE OF ARFAYS D( \(2, N)\)
25 FEM -- AND II(N) AS NECESSAFY WHERE \(N\)
30 FEM -- = MAXIMLM NUMEER OF FRIGE
35 FEM -- BFEAKS YOU WILL LSE
40 [IM Q 2,10 ), U(10)
50 FFINT
60 FFINT "ENTEF THE NIMEEF GF AVAILAELE FRTLE"
65 FRINT "BREAKE ":
```

```
70 INFIIT E
OO FFINT
GO FFINT "ENTEFE MINTMIM EIANTITY, MAXIMLM"
G5 FFINT "GINNTITY, FRIEE"
1OO FGF I = 1. TG E
110 FFINT "AT FFIEE EFEAK゙ ":I;" ";
IOO INFFIT E(I,I),G(Z,I),M(I)
1% NEXT I
140 FFINNT
15O FFINT "ENTEF THE INIT HOLLINE EGG"
155 FFINT "(% FEF: UNTT) ";
160 INFIIT H
170 IF H % O THEN 2OO
1.GO FFINT "HOLINNG EIST MIST EE GFEATEF THAN ZEFO""
1%0 FITTO 150
20 H=H / 100
Z1O FFINT "ENTEF THE EOGT EF FLAEING AN"
215 FFINT "GFDEFF (韦)";
2O INFUIT E
ZO FFTNT "ENTER THE DEMAND EIIANTITY FER YEAF"
Z5 FFFINT "(0=END)";
240 INFUIT II
250 IF II = O THEN 440
ZOO FFINT
Z7O FEM EIITFOIT THE FESLILTE
ZO FFINT "EOIQ # GF DUANTITIEG |NIT FFIEE"
ZE FFINT " GFOEFE"
ZOO FEM IALGLILATE EDIO BY FGFMILAA FGF
FGG FEM EALH FFINE EFEAF
OO FOFF I = 1 TO E
Z|OE=INT (EGF((# # п * E) / (U(I) * H)))
```



```
Z5 FFINT TAE( 2%)|(I):
OO FEM TEST TG SEE IF EOIG FALLS WTTHIN
SE FEM DFINEF GIIANTITY FOF THIE FFIGE
$40 IF E(1,I) % E THEN 300
#O IF O(こ,I) & THEN S%O
30 FFINNT
70 GITTO 400
EBO FEM FFIGE BFEAK IS NOT AVAILABLE
ZES FEM AT THTS EOIT
#% FFINT "--NOT FOGSIELE"
400 NEXT I
410 FFINT
420 EITIO 2%O
4O FEM FESTAFTT IF ENL FFOINFAMO
440 FFINT
4EO FFINT "WGILLI YOIU LIEE TG FE-FUNN THIS FFOIGFAM"
455 FFINT "WITH NEW IIATA`' (Y/N) ";
460 INFIIT Z$
470 IF Z出= "Y" THEN EO
480 IF Z$ & 
4%O ENN
```


References

Chase and Aquilano. Production and Operations Management. Homewood, Ill.: Richard D. Irwin, Inc., 1977.

McLaughlin and Pickhardt. Quantitative Techniques for Management Decisions. New York: McGraw-Hill, 1975.

Economic Production Quantity

It is often useful to know the optimal quantity of an item to produce in order to minimize expenses. This program computes that quantity for a given item, and incorporates simultaneous sales calculations (where units are being sold while more are being produced).

To use the program, enter the rate of production, the sales or use rate (the average number of units removed from inventory each day), the total number of units sold in a year, the holding cost (in dollars per unit), and the set-up cost. The program will output the optimal number of setups per year, and the optimum quantity to produce in each lot. The optimum quantity is that which minimizes set-up and carrying costs.

Example

Waldo's Paint Factory produces several different paint colors using a single mixing and filling machine. The machine will produce 300 gallons each day, and currently Waldo ships 125 gallons of each color every day, and 35,000 gallons per year. Holding costs are $\$ 0.15$ per gallon. For each lot produced, the machine must be completely cleaned, at a cost of $\$ 150$. How many lots of each color per year should Waldo produce? How many gallons in each lot?

Answer: Each year, Waldo should run three lots of 11,666 gallons each.

EOMNMIE FFODUTION EUANTITY

ENTEF THE FATE OF FFOLIGTION
(UNITE/DAY) $\sigma 00$
ENTER THE SALEE OF LEE FATE
(UNITE/DAY) ?125
ENTER ANNLAL EALES OF UEE 95000
ENTEF THE UNIT HOLIING GOST
(韦 FEF UNIT) \% 15
ENTEF THE SETIF EOST (\$) T15O
DFTIMAL NUMEEF OF EETUFS = 3
FEF YEAR
EFQ= 11666 UNTTE
WOULD YOU LIKE TG FEEFUN THIS FROGFAM
WITH NEW DATA? (Y/N) TN

Practice Problems

1. Daily production of 45 units, daily sales of 20 units. Annual sales total 4,000 units. Holding costs are $\$ 0.67$ per unit. Set-up costs are $\$ 25.00$. What is the EPQ?

Answer: Five lots of 800 units each.
2. 50 units per day are produced, 35 are sold. Annually, 6,500 units are sold. Holding costs are $\$ 0.45$ per unit. Set-up costs are $\$ 60.00$ per lot. How many lots are optimum? What size lots?

Answer: Three lots of 2,166 units each.

Program Listing

10
FRINT "EGONOMIC FFOLUITION QUANTITY
20 FRINT
OO FRINT "ENTEF THE FATE OF FFODUITIUN"
35 FRINT " (INITE/DAY) ";
40 INFUT R
50 IF F \geqslant O THEN 100
60 FRINT
70
75
EO FFINT
90 GOTG 80
100 FRINT "ENTEF THE EALES DF ISE RATE "
105 FRINT "(UNITS/DAY) ";
110 INFUT U
120 IF $\|>=0$ THEN 170
130 FFINT
140 FFINT "GALEE (ISE) FATE MUST EE NON-ZEFO"
150 FRINT
160 GOTO 100
170 FRINT "ENTEF ANNUAL EALES OF USE ":
180 INFUT H
190 IF H $=4$ THEN 240
200 FFINT
210 FFINT "ANNIIAL RATE MIST EE HIGHEF THAN"
215 FFINT "DAILY RATE:"
220 FFINT
230 GOTO 170
240 FRINT "ENTEF THE UNIT HOLIINE EOET"
245 FRINT "($\$$ FER UNIT) ":
250 INFUT .1
260 IF 170 THEN 310
270 FFINT

290 FFINT
300 GOTO 240
310 FRINT "ENTEF THE SETUF EOST (\$) ";
320 INFUT 5
30 FFINT
840 IF $S \geqslant 0$ THEN 360
350 FRINT "SETUF EIST MUST BE GREATEF THAN ZEFO."
360 FFINT
370 GOTO 310
$3 E O$ REM DUTFUT THE RESULTE

400 FRINT "OFTIMAL NUMEEF OF EETUFS $=" ; N$
405 FRINT "FER YEAR"
410 FFINT "EFQ= "; INT (H / N);" UNITE"
420 FEM FESTART OF END FROURAM:
430 FRINT
440 FRINT "WOULD YOU LIKE TG FEEFRUN THIS FROGRAM"
445 FRINT "WITH NEW DATA? (Y/N) ";
450 INFUT Z

```
460 IF Z卓 = "Y" THEN 2O
470 IF Z. < > "N" THEN 440
4EO ENII
```


Reference

McLaughlin and Pickhardt. Quantitative Techniques for Management Decisions. New York: McGraw-Hill, 1975.

Statistical Estimation Theory

Statistical estimation theory is the science of determining unbiased estimates for various statistics from sample figures, establishing confidence interval estimates for those statistics, and determining the number of samples that must be taken to reduce the probability of error in these estimates to stated maxima. This program performs these calculations.

At the start of the program you must enter the size of the sample, the mean of the sample, and the sample variance. The program then prints the unbiased estimate of the population variance and, for both the mean and the standard deviation, each of seven different confidence levels, the confidence interval estimate, and the maximum and minimum values produced thereby. You may then have the program calculate how large a sample you would have to take to reduce the error of your estimate to a given maximum. You enter the desired confidence level, the maximum desired error, and whether you are testing the mean or the standard deviation. The program then calculates the sample size needed.

Example

A government researcher did a study to determine how long people had to wait in line at the post office. He took 100 samples. The mean of the sample was 15 minutes, and the sample variance was 2.02 . At each of the seven confidence levels, what is the maximum and minimum for the mean and standard deviation? How many samples would have to be taken to be 99% confident that the error in the mean was no greater than 0.2 ?

Answer:

STATISTIGAL ESTIMATION THEOFY

ENTER NUMEER OF SAMPLES TAKEN 100
ENTEF MEAN OF GAMFLLE 715
ENTER EAMPLE VARIANIE 2.02
IINEIASEI ESTIMATE OF EIGMA SDLIARED
FOFILLATION VARIANEE $=2.04040404$
GONFIDENEE INTEFVAL ESTIMATES FGR MEAN:
CONFIDENGE FLIS OR MINUS MAXIMUMM MINIMUM
$.096346016 \quad 15.096346 \quad 14.903654$
$80 \quad .183060802 \quad 15.183060314 .8169597$
$90 \quad .23495561 \quad 15.2349554 \quad 14.7650446$
$95 \quad .27996656 \quad 15.2799666 \quad 14.7200954$
$99 \quad .367938199 \quad 15.3679562 \quad 14.6320618$

IONFIDENCE INTEFVAL ESTIMATES

FOR ETANDAFD DEVIATION:

50	.0681269213	1.49655404	1.3603002
60	.0850080143	1.51343514	1.34341911
70	.104685021	1.53611214	1.3237421
80	.129443181	1.5578703	1.2969634

90	.166136529	1.59456565	1.26226859
95	.197966273	1.6265939	1.29046085
99	.260171595	1.65859872	1.16825553

[II YOU WANT A GALEULATIGN OF HOW LARGE
A SAMFLE YOU MUET TAKE TO FEDUCE
THE ERROR OF YOUR ESTIMATE TO A
MAXIMIIM OLAANTITY? (Y/N)
?Y
ENTEF YOUR GHOSEN IONFIDENGE LEVEL (FROM ABOVE EHOILES ONLY), 1 FOR 50 , $2 \mathrm{FOR} 60,3 \mathrm{FOR} 70,4 \mathrm{FOR} \mathrm{BO}, 5 \mathrm{FOF} 90$, 6 FOR 95, AND 7 FOR 99
77
ENTEF MAXIMLM IESIFED EFFOR OF ESTIMATE
70.2

AFE YOII TEETING THE MEAN (M) DR THE ETANDARD DEVIATION (Ξ ?
FM
AT THE 99 FERCENT CONFIDENCE LEVEL
IT WOULII BE NEGEGGAFY TO TAEE 339
GAMFLEE TO EE GURE THAT YOUF ESTIMATE
OF THE ERFOR IN THE MEAN
GID NOT EXEEED . 2
DII YOU HAVE NO MORE EALEILATIGNS (O),
MORE WITH THE SAME SAMFLES (1), OR
EFANLI-NEW SAMFLING (2)?
$\%$

Practice Problems

1. Using the data from the above example, how many samples would have to be taken to reduce the error in the standard deviation to 0.0746353654 at the 99% confidence level?

Answer: 1,204
2. If all the data is the same as in the above example, how many samples must be taken to reduce the error in the mean to 0.0995503798 at the 95% confidence level?

Answer: 784

Program Listing

10 FFINT "STATISTICAL ESTIMATION THEORY"
20 ロIM E(7),F(7)
25 FRINT
29 FEM FEAD UONFIDENCE LEVELS AND COEFFIGIENTS
30 FOR I $=1$ TG7
40 FEAD E(I),F(I)
50 NEXT I
6O FFINT "ENTEF NUMBEF OF GAMFLEE TAKEN ";
70 INFUT N
EO FRINT "ENTEF MEAN OF SAMFLE ":
90 INFUT X

100
110
$12051=52 * N /(N-1)$
130 FRINT＂UNEIASED ESTIMATE GF EIEMA SMAFEM＂
140 FFINT＂FOIFILATIMN VAFIANIE＝＂ 51
$1505=502(51)$
$2805=5 / 50 \mathrm{~F}$（N）
290 FFINT＂EUNFILENIE INTEFVAL ESTIMATES FGFR MEAN：＂
300 FFINT
B10 FFINT＂CINFILENEE FLIUE OF＂
2O FFINT＂MINLS MAXIMUM MINIMUM＂
30 FGF $=1$ TG7
 $X-F(I) * \Xi$
350 NEXT I
B6O FFINT
370 FFINT＂EONFILENLE INTEFVAL ESTIMATES＂
3®O FFINT＂FOF STANLAFL DEVIATIGN：＂
390 FFINT
400 FIFI $=1$ TG 7
$410.1=F(I) * E / \operatorname{SOR}(2 * N)$

480 NEXT I
440 FFINT
450 FFINT＂［III YOII WANT A EALEILATIGN GF HEW LAFIEE＂
460 FFINT＂A $\triangle A M F L E$ YOUI MIST TAKE TQ FELIIEE＂
470 FFINT＂THE EFFIGFi IF YOUFI ESTIMATE TO A＂
480 FFINT＂MAXIMIM EIANTITY？（Y／N）＂
4\％INFIIT E客
500 IF E昜 $=$＂N＂THEN 780
510 IF Bक＂\quad＂Y＂THEN 450
SOO FFINT＂ENTEF YIUF EHISEN IINFIDENIE LEVEL＂

540 FFINT＂2 FGF 60,3 FDF 70,4 FDF $90,5 \mathrm{FDF} 90, "$
545 FFINT＂FOFI 5 ，ANLI 7 FIFi 99＂
550 INFUT－1
SGO FFINT＂ENTEF MAXIMIM IESIFEL EFFIIF IF ESTIMATE＂
570 INFUT M
E®O FRINT＂AFE YOII TESTINE THE MEAN（M）DF THE＂
5% FFINT＂STANLAFII LEVIATIGN（S）？＂
600 INFIIT E：
610 IF に家 $=" 5 "$ THEN 6 50
$G 20$ IF IG $\because \quad 3$＂M＂THEN 5EO
$640 \mathrm{~N}:=\operatorname{INT}((5 * F(, 1) / M) \therefore 2)+1$
650 GITO 690
$680 \mathrm{~N}:=\mathrm{INT}(((F(1) * 5 / M) \therefore 2 / 2)+1$

700 FFINT＂IT WOLILII EE NEGESEAFYY TI TAKEE＂：NZ
710 FRINT＂SAMFLES TI EE SIIFE THAT YOUR ESTIMATE＂
7こ0 FRINT＂OF THE EFFIMF IN THE＂；
730 IF E虫＝＂S＂THEN 7 00
740 FFINT＂MEAN＂
750 GIOTG770
760 FFINT＂ETANLIAFII LEVIATIGN＂
770 FRINT＂DID NDT EXI：EEM＂：M

780	FFINT	"LII YOUI HAVE NII MIFE	EALELILATIONS (0)
790	FFINT	"MIRE WITH THE SAME	SAMFLES (1), DF'
800	FFiINT	"EFANLI-NEW EAMFL INE	(2)
810	INFIIT	Y	
820	IF $Y=$	$=1$ THEN 440	
830	IF $Y=$	$=2$ THEN 60	
96	IIATA	$50,0.67449024545$	
910	IIATA	$60,0.841621428514$	
920	[IATA	$70,1.0964504476$	
930	IIATA	$80,1.28155156616$	
940	LIATA	$90,1.64485681705$	
950	IIATA	951 , 96964102541	
960	IIATA	$99 \% 2575975607$	
99	ENII		

```

\section*{References}

Harnett. Introduction to Statistical Methods. 2nd ed. Reading, Mass.: Addison-Wesley, 1975.
Spiegal. Statistics. New York: McGraw-Hill, 1961.

\section*{Statistics}

This program analyzes grouped and ungrouped data which you enter, and prints as many as 26 statistics: measures of central tendency, variance, skewness, kurtosis, and correlation.

When you run the program, enter the total population (if known), or 0 (if unknown). If the data are grouped, enter G; if ungrouped, enter U. The next step is to enter the frequency, followed by the value observed at that frequency. After the last item, enter a frequency and value of 0 . If you are entering ungrouped data, just enter the observations; enter 9E9 after the last one. The program then calculates and prints the statistics, indicating which are not available based on the data entered.

\section*{Program Notes}

This program accepts a maximum of 250 grouped or ungrouped observations. To change this, modify lines 10 and 15 of the program as follows:
\[
\begin{aligned}
& 10 \text { DIM S(40),X(I),Y(I),Z(I) } \\
& 15 \mathrm{~N} 1=\mathrm{I}
\end{aligned}
\]

Replace the expression I with a constant equal to the maximum number of observations.

\section*{Example}

Randy Flashpan is a local disk jockey. His weekly show has a segment during which listeners phone in their evaluations of certain songs by rating them on a scale of one to ten. One hundred listeners called in their scores on one record, and their scores are listed below:
\begin{tabular}{cc} 
Score & Number of Listeners \\
1 & 13 \\
2 & 6 \\
3 & 2 \\
4 & 4 \\
5 & 10 \\
6 & 13 \\
7 & 22 \\
8 & 18 \\
9 & 10 \\
10 & 2
\end{tabular}

In Randy's lexicon, a song with a median score of seven or more is "boss hit-bound." If the median is between five and seven, the song is classified as "lukewarm." If the median falls below four, the record is dropped from the radio station's playlist.

Based on the sample data shown, how should Randy classify the record? Furthermore, how does someone with the intelligence of a disk jockey run this program?

Answer: This song resides in the lukewarm category, with a median of 6.59.
```

ENTEF FFEDUENCY, THEN VALUE
(O,O TO ENI)
FAIF NG. 1 %13,1
FAIF NO. 2 %6,2
FAIF NO. % %2,3
FAIF NO. }4\mathrm{ %4,4
FAIF NO:5 %10,5
FAIF NO. 6 %13,6
FAIF NOn 7 %2.7
FAIR NO.E T1E,E
FAIF NO. % %10,9
FAIF NO: 10 %2,10
FAIF NW, 11.00%
FESLLTS TABULATED AS FOMLOWS:
TOTAL FOFLILATION: 100
MATA AFE: GROUFED
NW: OF SAMFLES: 100
SLIM OF SAMFLES: SES
MEAN:5.SS
EUM OF EDUAFEE: 4077
MEAN DEVIATION: 2.141
MEMTAN: 6.5%09090%
VARTANEE: 6.7E1099%6
ETANDAFD DEVIATION: 2GO4O5A52
INETASEG ESTIMATE OF VARIANEE:
6.8495959%
STANDARL DEVIATION UEING THAT VARIANEE:
2.61717927
FROBABLE EFROR: 1.75640874
STANOARO ERROR DF MEAN: 261717927
GOEFF: WF VARIATION: 44.66645S4%
EFII MOMENT ABOUT MEAN: -11.94672%
4TH MOMENT AEOUT MEAN: 105.969549
MOMENT EOEFF. SKEWNESS: -.67654E1OE
MOMENT UOEFF. KUFTOSIS: 2.3049565S
UNBTASED ESTIMATE SFL EENT. MOMENT:
-12,3136755
ETANDAFD EFFOR MEAN WITH FINITE FOFULA-
TION GORFECTION FAGTOF: O
FEAREON"S 2ND GOEFF. GEEWNESS:
-. 576605023
FANGE: %
TNDEX OF MEAN DEVIATIGN TG FRODUNT OF
M.A.E. ANL ETANDAFD DEVTATIDN:

1. .05044907
```

\section*{Practice Problems}
1. Meter readings from a holding tank at a fuel processing plant are: \(12.98,13.001,18.25,4.4,9.8,11\), \(14.5,12.7,7.2\), and 6.1 . What are the mean and median meter readings? What is the standard deviation? Answer: The mean reading is 10.9931 ; the median is 11.85 . The standard deviation is 3.98843859 .
2. An actuarial clerk wants statistics on the population of Casper County relative to the occurrence of heart disease. The table below shows age brackets and the number of diagnosed heart disease cases for those ages:
\begin{tabular}{cc} 
Age & \begin{tabular}{c} 
Diagnosed Cases \\
(per 1000 people)
\end{tabular} \\
\(0-5\) & 6 \\
\(6-10\) & 5 \\
\(11-20\) & 3 \\
\(21-25\) & 8 \\
\(26-30\) & 7 \\
\(31-35\) & 12 \\
\(36-40\) & 17 \\
\(41-45\) & 19 \\
\(46-50\) & 30 \\
\(51-55\) & 35 \\
\(56-60\) & 43 \\
\(61-65\) & 50 \\
\(66-70\) & 61
\end{tabular}

What is the median age of the onset of heart disease in Casper County? Twelve hundred cases were evaluated. What is the measure of skewness for this population, since it appears to be skewed to the right of the mean? What is the standard error of the mean? (Hint: You must increase array sizes on line 10 to 300.)

Answer: The median age is 58.1976744 for the onset of heart disease. Skewness -1.26117836 . The standard error of the mean is 0.903236727 .

\section*{Program Listing}

```

15% REM - EALCULATE SLIM OF ITEMS
160 S(2) = E(2) + X(.1)
16% REM - CALCILLATES THE SLM DF SQLIARES
170 S(4) = S(4) + X(.1) * X(.1)
175 -1 = . 1 + 1
180 IF , < N N THEN 110
1E9 FEM - EALELLLATES MEAN
1%0 S(3)= S(2) / S(1)
20% REM - GALIULATES DEVIATION FROM MEAN
210 S(5) = ABS (E(3) - X(.1))
219 FEM - CALCILLATES EUM IF DEVIATIONS
220 5(6)=5(6)+5(5)
229 FEM - EALCLLATES SRI FOWEF OF DEVIATION
230 S(3) = (X(.1) - S(3)) % 3
29 FEM - EALOLLATES SUM OF BRLI FOWEFS
240 S(9) = S(9) + S(3)
249 FEM - EALCLLLATES 4TH FOWEF OF DEVIATION
250 S(10)=(X(.1) - S(3)) = 4
259 FEM - GALCILLATES SIMM OF 4TH FOWEFS
260 S(11) = S(11) + S(10)
27% FEM - EALIILATES MEAN DEVIATION
280 S(7) = E(6) / S(1)
2SS FEM - ISE SHELL-METZNEF SORT TO
29% FEM - ARFANGE IATA IN ASIENDING DRDEF:
290 M1 = S(1)
295 M1 = INT (M1 / 2)
300 IF M1 = O THEN 370
305K= S(1)-M1
310 1=1
315 I = .
320 L = I + M1
32 IF X(I) < = X(L) THEN 355
30% W = X(I)
85 X(I) = X(L)
340 X(L) = W
345 I = I - M1
350 IF I > = M1 THEN 320
355 - = + + 1
360 IF .1 > K THEN 295
365 GOTO 315
36% REM - GALCULATE MEDIAN
370 IF S(1) / 2 = INT (S(1) / 2) THEN 410
379 REM - ODD NO. OF ITEME
80 M = E(1) / 2 + 0.5
390 S(12) = X(M)
400 GOTG 840
409 FEM - EVEN NO. DF ITEMS
410 M = S(1) / 2
420 E(12)=(X(M)+X(M + 1)) / 2
430 G0TO 840
439 FEM ---- GROUIFEL IIATA ----
440 FRINT "ENTER FREDUENE:Y, THEN VALUE"
4 4 2 ~ F R I N T ~ " (O , O ~ T O ~ E N L I) ~ " '
445 . = 1
450 FRINT "FAIF NO. ";al:" ";

```
```

459 FEM - EALIIILATE AESOLIITE MEVIATIGN
460 INFIIT Y (,1),Z(,1)
470 IF Y(.1) = 0 THEN 5%0
4E% FEM - IALEULLATE NG: IF EAMFLES
4%OS(1)=\Xi(1)+Y(.1)
495S1=51+1
499 FEM - EALELILATE TGTAL IIF VALIEE
500 E(こ)=\Xi(2)+Y(.1) * Z(.1)
5O9 FEM - IALEIILATE EIMM IF SIIIARES
S10 E(4)= S(4) + Y(.1) * Z(,1) * Z(,1)
500 1 = -1 + 1
5-5 IF ,| < = N1 THEN 45O
5% FEM - EALIIILATE MEAN
505(3)=5(Z)/ S(1)
540 FGFi ! = 1 TG E(1)
55 S(5)=Y(.1) * AES (S(3) - Z(.1))
ENFEM - IALELILATE ELMM DF AES. LEVIATIDNE
SOS(6)=S(6)+S(5)
SGOFEM - IALIILLATE SFII FOWEF IF IEVIATIGNS
570 S(S)=Y(.1)* (Z(,1)-5(3)) \therefore =
57% FEIM - IALIIILATE SIIM IF SFIL FOWER:S
50 S(%)= S(9)+ S(8)
SEG FEM - EALILILATE 4TH FIWEFS IF LIEVIATIGNS
50 E(10)=Y(,1)* (Z(,1)-\Xi(\#)) \therefore4
5%FEM - EALIIILATE EIIM IF 4TH FGWEFTS
6005(11)=5(11)+5(10)
\&10 NEXT .l
619 FEM - EALEIILATE MEAN IEVIATIIN
60 S(7)=\Xi(6)/ S(1)
G2G FEM - IISE SHELL- METZNEF EIFT TG
O% FEM - AFFANIUE LIATA IN ASILENLINLO DFIEFI
60 M1=51
65M1=INT (M1/2)
640 IF M1 = 0 THEN 740
645 F゙=51-M1
650,|=1
65 I = .l
6OLL=I +MI
6G IF Z(I) < = Z(L) THEN 710
670 V = Y(I)
65W W=Z(I)
60 Y(I)=Y(L)
65}Z(I)=Z(L
690 Y(L) = V
65
700 I = I -M1
705 IF I ` = 1 THEN 660
710 1 = .1 + 1
715 IF -1 % N゙ THEN ESE
720 GMTO 655
750 IF I\$ = "S" THEN 760
73% FEM - IALELILATES MENIAN
740 T = 0
750 ド=1
760 IF T + Y(F) % \Xi(1) / 玉 THEN EOO

```
```

765 T = T + Y(K)
770K=K+1
780 GOTO 760
785 IF K < = E(1) THEN 750
790 FRINT "MORE WITH THE SAME SAMFLES (1), OR"
BOO F= ((Z(K) - Z(K゙ - 1)) / Y(K)) * (E(1) / 2 - T)
810S(12)=(Z(K)+Z(K-1))/2+F
840 N = S(1)
850 FRINT "RESULTS TABULATED AS FOLLOWS:"
860 FRINT "TOTAL FOFULATION: ";
870 IF T9 = 0 THEN 900
880 FFINT T9
890 GOTO 910
ヲOO FFINT "UNKNOWN/NOT INDICATEL"
905 FRINT
910 FFINT "DATA ARE: ";
920 IF U\$ = "G" THEN 950
980 FRINT "UNGROUFEI"
940 GOTO %60
950 FRINT "GROUFELI"
960 FFINT "NO. OF SAMPLES: ":S(1)
970 FRINT "SUMM OF SAMFLES: ":S(2)
980 FRINT "MEAN: ":S(3)
9%0 FFIINT "SUM DF SOUARES: ":S(4)
1000 FRINT "MEAN DEVIATION: ":S(7)
1010 FRINT "MEDIAN: ":S(12)
1020S(13)=S(4)/N - S(3) \therefore 2
1030 FFINT "VAFIANCE: ":S(13)
1040 IF U\$ = "G" THEN 1070
1050 S(14) = S(13)- (1 / 12) * (Z(2) - Z(1)) * 2
1060 PRINT "VARIANCE WITH SHEF. GORR.: ":S(14)
1070 S(15) = S0F (S(1\Xi))
1080 FRINT "STANLIARL DEVIATION: ":S(15)
1090 IF U\& = "G" THEN 1120
1100 S(16) = S0R (S(14))
1110 FRINT "STANLARD DEVIATION WITH SHEF: LORF::"
1115 FRINT S(16)
1120 S(17) = S(13) \# N / (N - 1)
1130 FRINT "UBIASEI ESTIMATE OF VAFIANCE:"
1135 FFINT S(17)
1140 S(18) = SOR (S(17))
1150 FRINT "STANLARL DEVIATION IEING THAT VARIANEE:"
1155 FRINT E(18)
1160 S(19)=,6744%*S(15)
1170 FRINT "PROBABLE ERFOR: ":S(1%)
1180 S(20)= SQF (S(17)/N)
1190 FRINT "STANDARD ERROR OF MEAN: ":S(20)
1200 S(21)= E(15)/E(\Xi)
1210 FRINT "GOEFF. IF VARIATION: ";100 * S(21):"%"
1220 S(22)=\Xi(%)/N
1230 FRINT "SRD MOMENT ABOUT MEAN: ":S(22)
1240 S(23)= S(11)/N
1250 FRINT "4TH MDMENT ABOUT MEAN: ":S(23)
1260 IF U\& = "G"" THEN 1300
1270R=Z(2)-Z(1)

```

```

12%0 FRINT "4TH MIMENT WITH SHEP. IORF:""
12%5 FRINT S(24)
13005(25)=S(22) / (5(15) \therefore 3)
1E10 FFINT "MINENT EIEFF" EKEWNESS: ":%(25)
1320 3(20)= S(2S) / (S(13) \therefore 2)
13O FFINT "MIMENT IMEFF. FUNFTISIS: "%(26)
1\Xi405(27)=(S(2こ)*N*2)/ ((N-1)* (N-2))
1SO FFINNT "UNEIASEL ESTIMATE SFII EENT. MOINENT:"
1S5 FRINT S(27)
1360 IF T% = 0 THEN 1420
1370 IF N< =0.05 * TG THEN 1420
1\XiO S(2E)=\Xi(20) * SOR ((TG-N)/ (TG-1))
1SO FFINT "STANDARD ERFOR MEAN WITH FINITE FOFIILA-"
1400 FFINT "TIGN EQFFEGTION FAITOF: "gS(2E)
1410 FIOTO 1430
1420 FFINT "FINITE FGFULLATIGN EGFFEETIGN FAGTGR N/A"
1430 S(2゙9)= % (5(\Xi) - S(12))/5(15)
1440 FFIINT "FEAFSONF ZNL EDEFF. SKEWNESS:"
1445 FFINT S(2G)
1450 IF |\& = "G" THEN 14S0
1460 5(%0) = X(N) - X(1)
1470 GOTO 14%0
1480 S(30) = Z(S1) - Z(1)
1490 FFiINT "FAANEE: ":S(SO)
1500 E(31)=5(7) / (.7978545608 * 5(15))
1510 FFIINT "INLEX GF MEAN IEVIATINN TG FROILULT GF"
1520 FFINT "M.A.E: ANM STANDAFLI IEVIATIGN:"
15% FFFINT S(31)
15:00 ENLI

```

\section*{References}

Mendenhall, William, et al. Statistics: A Tool for the Social Sciences. Belmont, Calif.: Duxbury Press, 1974.
Spiegal. Statistics (Schaum's Series). New York: McGraw-Hill, 1961.

\section*{Unbiased Estimator of Standard Deviation}

The concept of an unbiased estimator of the standard deviation is not common among American statisticians. However, according to the Russian mathematician A. A. Sveshnikov, the unbiased estimator of the standard deviation is given by the following formula:
\[
\widetilde{\sigma}=K_{N} \sqrt{\frac{1}{N-1}} \sum_{\mathrm{J}}^{\mathrm{N}} \mathrm{~N}_{1}^{\mathrm{N}}\left(\mathrm{x}_{\mathrm{j}}-\widetilde{\mathrm{x}}\right)^{2} \quad \text { where } \quad \mathrm{K}_{\mathrm{N}}=\sqrt{\frac{\mathrm{N}-1}{2}\left(\frac{\Gamma\left(\frac{\mathrm{~N}-1}{2}\right)}{\Gamma\left(\frac{\mathrm{N}}{2}\right)}\right)}
\]

Using this symbolism \(\mathrm{N}=\) sample size, it is easily shown that:
for \(\mathrm{N}=2 \mathrm{M}\) (even sample size), \(\quad\) while for \(\mathrm{N}=2 \mathrm{M}+1\) (odd sample size),
\(\mathrm{K}_{\mathrm{N}}=\sqrt{\frac{\mathrm{N}-1}{2}}\left(\frac{\frac{2 \mathrm{M}-3}{2} \cdot \frac{2 \mathrm{M}-5}{2} \cdots \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi}}{(\mathrm{M}-1)(\mathrm{M}-2) \cdots 2 \cdot 1}\right)\)
\[
\mathrm{K}_{\mathrm{N}}=\sqrt{\frac{\mathrm{N}-1}{2}}\left(\frac{(\mathrm{M}-1)(\mathrm{M}-2) \cdots 2 \cdot 1}{\frac{2 \mathrm{M}-1}{2} \cdot \frac{2 \mathrm{M}-3}{2} \cdots \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi}}\right)
\]

To use the program, you must enter the number of samples, and the sum of the squares of the deviations. The program prints out the unbiased estimator of the standard deviation, and asks if you want another calculation.

\section*{Example}

In a class of 35 seventh grade students, the sum of the squares of the deviations for their ages is 3.156 . What is the unbiased estimator of the standard deviation?

Answer: 0.30691769
IINBTASED ESTIMATOR OF ETANDARD DEVIATION

THIS FFGGRAM GALGULATES THE UNBTASEL
EETIMATOF DF THE ETANDARD DEVIATION
WHEN VARIAELE IE NOFMALLY DISTRTBUTED
ENTEF THE SIM DF THE SOUARES
OF THE IEVIATIONS 23.156
ENTEF THE NUMEEF OF GAMFLEE 9 S
INEIASED ESTIMATOF OF STANUAFD
DEVIATION \(=.30691769\)
ANOTHEF EALCLLATION? (Y/N) ON

\section*{Practice Problems}
1. If 40 samples are randomly distributed and the sum of the squares of their deviations is 9.63 , what is the unbiased estimator of the standard deviation?

Answer: 0.500108775
2. In a group of 26 randomly distributed samples, the sum of the squares of the deviations is 34.953 . What is the unbiased estimator of the standard deviation?

Answer: 1.1943016

\section*{Program Listing}
\begin{tabular}{|c|c|}
\hline 5 & FFINT "UNETASEL ESTMATOR OF" \\
\hline 7 & FFINT "ETANDAFIE UEVIATION" \\
\hline 8 & FFINT \\
\hline 10 & FFINT "THIS FFGURAM EALUILATES THE LINETASEIM \\
\hline 20 & FRINT "ESTIMATOF DF THE ETANDAFD DEviAtion" \\
\hline 00 & FFINT "WHEN VAFIABLE IS NDFMALIY ITSTFIBUTEU" \\
\hline 40 & FRINT \\
\hline 50 & FFINT "ENTEF THE SUM DF THE STUARES \\
\hline 60 & FRINT "DF THE DEVIATIONS ": \\
\hline 70 & TNFUT : \\
\hline 80 & FFINT "ENTEF THE NUMEEF: OF EAMFLES ": \\
\hline 90 & TNFUT N \\
\hline 9 & FEM GOMFUTE K-SUB-N TEFM \\
\hline 100 & \(A=\operatorname{Saf}((N-1) / 2)\) \\
\hline 110 & FOR M = ( \((\mathrm{N}-1) / 2)-1)\) TU 1 STEF - \\
\hline 120 & \(A=A * M /(M+0,5)\) \\
\hline 130 & NEXT M \\
\hline 139 & FEM SQR (FI)/2=.EE6226955 \\
\hline 140 & \(F={ }^{\prime} 066226955\) \\
\hline 150 & IF \(N / 2=\) JNT ( \(/ 2 / 2\) ) THEN 170 \\
\hline 159 & FEM DOD EAMFLE ETZE \\
\hline 160 & \(F=1 / F\) \\
\hline 170 & FFINT "InNEIASEI ESTTMATOF UF ETANDAFI" \\
\hline 180 & FRINT "DEVIATTON = ";A F F \# EEF (E/ (N - 1)) \\
\hline 190 & FFINT "ANOTHEF EALEULATION? (Y/N) "; \\
\hline 200 & INFUTT Y* \\
\hline 210 & IF Y* \(=\) "Y" THEN 50 \\
\hline 220 & END \\
\hline
\end{tabular}

\section*{References}

National Bureau of Standards. Handbook of Mathematical Functions. Washington, D.C., 1966.
Sveshnikov, A. A. Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions. New York: Dover, 1968.

\section*{Chi-Square}

The chi-square test in statistics tests the compatibility of observed frequencies with the expected or theoretical frequencies. For example, suppose we are testing whether a die is fair or biased. We throw the die 60 times, recording the result each time. If the die is fair, we would expect that each of the six sides would come up close to ten times during the test. But we know that events do not always correspond to theoretical expectations. The chi-square test provides the means of determining whether the observed and theoretical results are so divergent that the die cannot be considered fair.

Chi-square is defined as follows:
\[
x^{2}=\sum_{\mathrm{I}=1}^{\mathrm{K}} \frac{\left(\mathrm{O}_{\mathrm{I}}-\mathrm{E}_{\mathrm{I}}\right)^{2}}{\mathrm{E}_{\mathrm{I}}}
\]
where \(O\) represented the observed frequencies and E the expected frequencies. Statisticians have determined what value (the " \(5 \%\) critical value") the chi-square must be below in order that we be \(95 \%\) positive that two results are compatible. This program tests whether the actual results fall within that level of confidence. It also employs Yates's correction (which some statisticians prefer and some dislike) to test the results. The chi-square formula with Yates's correction is
\[
x^{2}=\sum_{\mathrm{I}=1}^{\mathrm{K}}\left(\frac{\left|\mathrm{O}_{\mathrm{I}}-\mathrm{E}_{\mathrm{I}}\right|-0.5}{\mathrm{E}_{\mathrm{I}}}\right)^{2}
\]

The program also tests whether the results are too good (below the \(95 \%\) critical value), which makes clinical workers suspicious of the results.

The program first asks if the expected frequency is a constant. In the above example, each face of the die is expected to appear ten times, so the answer is "Yes"' and you would enter ten as the constant. You then enter the observed frequencies one by one; enter 99999 after the last one. If the expected frequencies are not constant, the program will ask for each set of observed and expected frequencies. After the last entry, enter 99999,1 to end the sequence.

The program will then calculate the chi-square statistics, both with and without Yates's correction, and print them out, indicating the degrees of freedom. It then tests each statistic against the \(5 \%\) and \(95 \%\) critical values, and prints out the results.

\section*{Example}

Suppose the results of the 60 throws of the die in the above example are as follows:
\begin{tabular}{ccc} 
Face & Expected & Actual \\
1 & 10 & 9 \\
2 & 10 & 8 \\
3 & 10 & 12 \\
4 & 10 & 10 \\
5 & 10 & 13 \\
6 & 10 & 8
\end{tabular}

What are the results of the chi-square test for this data? Can the die be considered fair?
Answer: The die can be considered fair.
```

EHI-SDUAFE
IE THE AMOUNT OF EXFEGTEI FREQUENGY
CONETANT% (Y/N) FY
ENTEF EONSTANT EXFEETED FFEQUENEY ?10
ENTER OBSEFVEO FREOUENOIES ONE BY ONE
AS REDUESTEI BELOW
ENTEF %%%9% TG ENII
%
%
72
710
7%
%
7%9%9
EHI EOUAFE FOF THESE
GESEFVATIINE = 2.2
FOF G DEGFEES OF FREEDOM
GDIAFE = 1.SE
FIVE FEFLENT EFITITAL VALUE GF
CHI SDUAFE IS 11.071
THEFEFORE THE HYFOTHESIS IS NOT
FE.IEGTED AT THE S% GRTTICAL VALUE

```

\section*{Practice Problems}
1. A student in a genetics class is performing an experiment to test classical Mendelian theory. That theory predicts that certain biological characteristics should appear in the species under review in the ratios 900:300:300:100. In the 1,600 samples which the student takes, they appear 904, 297, 302 , and 97 times, respectively. Are these results compatible with orthodox Mendelian theory?

Answer: The unadjusted chi-square result is 0.151111111 , and with Yates's correction that result is 0.104444444 . The \(5 \%\) critical value for three degrees of freedom is 7.8147 , so the results are compatible. However, the \(95 \%\) critical value is 0.35185 , so either with or without Yates's correction, the results are 'too good," and the instructor must view the student's experiment with suspicion.
2. A Las Vegas pit boss noticed that a particular roulette wheel seemed to be coming up red more often than black. He kept track of the next 1,000 spins; red came up 546 times, and black 454 times. Is the wheel biased?

Answer: The chi-square without Yates's correction is 8.46400001 , and with it is 8.28100001 . The \(5 \%\) critical value is 3.8415 , and the hypothesis is therefore rejected. The pit boss should junk that roulette wheel immediately.

\section*{Program Listing}
```

10 FRINT "CHI-GQUARE"
20 PRINT
100 FRINT "IS THE AMOUNT OF EXFECTEL FFEQUENG:Y"
110 FRINT "CONSTANT? (Y/N) ";
120 INFUT A\$
130 IF A* = "N" THEN 500
135 IF A\$ < }>\mathrm{ "Y" THEN 100
140 FRINT "ENTER CONSTANT EXFEDTED FFEDUENLY ";
150 INFUIT Y

```
\begin{tabular}{|c|c|}
\hline 29 & FEM EXFEGTEL FREQUENGY IS A GONSTANT \\
\hline 300 & FRINT "ENTEF DBSERVED FREQUENGIES ONE BY ONE" \\
\hline 310 & FRINT "AS FEOUESTED EELOW" \\
\hline 315 & FRINT "ENTEF 9999\% TO END" \\
\hline 220 & INFIIT \(X\) \\
\hline 350 & IF \(X=9999 \%\) THEN 1000 \\
\hline \multicolumn{2}{|l|}{\(350 \mathrm{~N}=\mathrm{N}+1\)} \\
\hline 370 & \(\zeta=S+(A B S(X-Y) \times 2) / Y\) \\
\hline \multicolumn{2}{|l|}{\(390 \mathrm{~T}=\mathrm{T}+((\mathrm{ABS}(X-Y)-0.5) \therefore 2) / \mathrm{Y}\)} \\
\hline 400 & IF Aq \(=\) "N" THEN 520 \\
\hline 410 & GOTO 320 \\
\hline 499 & FEM EXFECTEL FFEQLENCY IS NOT A LINETANT \\
\hline 500 & FRINT "ENTER, FAIF EY FAIF AS REQUESTED, THE" \\
\hline 510 & FRINT "OESEFVEL, THEN THE EXFECTEL," \\
\hline 515 & FRINT "FFEDIENCIES" \\
\hline 517 & FRINT "ENTEF 99999.1 TO ENL" \\
\hline 520 & INFUT \(X, Y\) \\
\hline 580 & GOTO 380 \\
\hline 1000 & FFIMT "CHI-SDUARE FOR THESE" \\
\hline 1010 & FRINT "OESERVATIONS \(=\) ":S \\
\hline 1020 & FRINT "FOF ":N - 1:" DEGREES OF FREELIMM" \\
\hline 1030 & FRINT "WITH YATES'S EORREOTION, LHI-" \\
\hline 1040 & FRINT "SQUAFE = ":T \\
\hline \(109 \%\) & REM ERANCH FOR EALGLLATION OF GRITICAL VALUES \\
\hline 1100 & IF \(N>101\) THEN 1600 \\
\hline 1110 & IF \(N=101\) THEN 1500 \\
\hline 1120 & IF \(N>31\) THEN 1400 \\
\hline 1200 & FOFI \(=1\) TG \(\mathrm{N}-1\) \\
\hline 1210 & FEAL E: \\
\hline 1220 & NEXT I \\
\hline 1230 & FOR I \(=\mathrm{NTON}+2 \%\) \\
\hline 1240 & FEAL II \\
\hline 1250 & NEXT I \\
\hline 1260 & GOTO 2500 \\
\hline 1400 & \(W=1.6449 * \operatorname{SoR}(2 / 2 \times(9-1))\) ) 3 \\
\hline 1405 & \(E=(N-1) *(1-2 /(9 *(N-1))+W\) \\
\hline 1410 & \(\square 1+(N-1) *(1-2 /(9 *(N-1))-W\) \\
\hline 1420 & GOTO 2500 \\
\hline 1500 & \(\square=124.342\) \\
\hline 1510 & \(\square=77.9295\) \\
\hline 1520 & GOTO 2500 \\
\hline 1600 & \(E=0.5 *(1.6449+\operatorname{SaF}(2 *(N-1)-1)) \cdots 2\) \\
\hline 1610 & \(\square 10.5 *(\operatorname{Sof}(2)(9 *(N-1))-1.6449) \times 2\) \\
\hline 2500 & FFint "FIVE FEFIENT ERITICAL VALUE GF" \\
\hline 2510 & FRINT "CHI-SDUAFE IS ";C \\
\hline 2520 & IF T \(>\) I THEN 2700 \\
\hline 2530 & IF \(5>\) ¢ THEN 2 SOO \\
\hline 2540 & IF \(S\) ¢ I OR T < I THEN 2900 \\
\hline 2600 & FRINT "THEREFGRE THE HYFOTHESIS IS NOT" \\
\hline 2610 & FRINT "RE,IELTE[ AT THE 5\% ERITICAL VALUE" \\
\hline 2620 & GOTO 999\% \\
\hline 2700 & FRINT "THEREFORE THE HYFOTHESIS IS" \\
\hline 2710 & FRINT "RE.EETEI AT THE S\% ERITICAL VALUE" \\
\hline 2720 & GOTG 99\%\% \\
\hline 2800 & FRINT "While the unamuister chi-EDUAFE" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 2810 & FRINT & "Values are unaceeptable, those with" \\
\hline 2920 & FFINT & "YATES'S EIDFFEITIUN ARE NGT; THEFEFGRE" \\
\hline 2830 & FRINT & "SAMFLE SIZES SHOULD BE INGREASED OR" \\
\hline 2940 & FRINT & "GUESTITUTE MULTINOMIAL LISTRIEUITION" \\
\hline 2850 & FRINT & "METHOLS" \\
\hline 2660 & GOTG & \(99 \%\) \\
\hline 2900 & FRINT & "AGREEMENT IS TOO GOOL AND SHOULI EE" \\
\hline 2910 & FRINT & "EXAMINED EFITIGALLY, EEGAUSE EITHEF" \\
\hline 2920 & FRINT & "WITH OF WITHOUT YATES'S EOFFEGTION, THE" \\
\hline 2930 & FRINT & "CHI SDUARE VALUE IS BELOW THE \(95 \%\) " \\
\hline 2940 & FRINT & "OFITICAL VALIEE" \\
\hline 5000 & data & 3.8415,5,9915,7.8147,9.4877,11.071, 12.592 \\
\hline 5010 & data & \(14.067,15.507,16.919,18.307,19.675,21.026\) \\
\hline 5020 & data & 22. \(362,23.685,24.996,26.296,27.587,28.869\) \\
\hline 5030 & data & \(30.140,31.410,32.671,33.924,35.173,36.415\) \\
\hline 5040 & data & \(37.653,38.885,40.113,41,387,42,557,43,773\) \\
\hline 5050 & data & .0039\%, 10259,.35185, 71072, 1.1455 \\
\hline 5060 & data & \(1.635,2.167,2.733,3.325,3.940\) \\
\hline 5070 & IIATA & 4.575,5.226,5, \(592,6.571,7.261\) \\
\hline 5080 & data & \(7.962,8.672,9.390,10.117,10.851\) \\
\hline 5090 & data & \(11.591,12.385,13.091,13,848,14.611\) \\
\hline 5100 & data & \(15.379,16.151,16.928,17.708,18.493\) \\
\hline \(9 \% 9\) & ENII & \\
\hline
\end{tabular}

\section*{References}

Hoel. Introduction to Mathematical Statistics, 2nd ed. New York: John Wiley, 1954.
Spiegel. Statistics (Schaum's series). New York: McGraw-Hill, 1961.

\section*{Data Forecasting Divergence}

This program determines the degree to which a forecast diverges from actual data. You enter pairs of actual data and corresponding forecast. After the last data pair, enter 99999,1 . The program will then print out the number of pairs of figures, the total error, the total absolute error, the total squared error, the mean error, the mean absolute error (MAE), the mean square error, and the root mean square error.

\section*{Example}

A statistical forecaster determined the following data having made the following respective forecasts:
\begin{tabular}{cc} 
Data & Forecast \\
1 & 1.0 \\
2 & 2.2 \\
3 & 2.9 \\
4 & 3.9 \\
5 & 5.3 \\
6 & 6.1 \\
7 & 7.0 \\
8 & 7.9
\end{tabular}

What are the error statistics for these figures?
Answer: Number of pairs \(=8\); total error \(=0.300000001\); total absolute error \(=0.899999999\); total squared error \(=0.17\); mean error \(=0.0375000001\); mean absolute error \(=0.1125\); mean square error \(=0.02125\); root mean square error \(=0.145773797\).

MATA FDFEEASTING DTVEFGENGE
```

ENTEF DATA ANI FORECAST
(9999%,1 TO ENII)
71,1
\#,2,2
3,2.
3,3,9
5,5,5
0,6.1
7,7
8,7.9
%909%%,1
NG. GF FAIFS OF FIGURES=:
TOTAL EFROF =-- 500000001
TOTAL ABGOLIITE EFROF: = "599999999
TOTAL SDUARED ERFOR = .17
MEAN EFROR = - .0375000001.
MEAN ABSOLUTE ERFOR = . 112E
MEAN EDIARE EFFOR = .0212S
FOUT MEAN GQUARE EFROR = . 145779797

```

\section*{Practice Problems}
1. The actual and predicted results in a city council race are as follows:
\begin{tabular}{lcr} 
& Vote \% & Poll \% \\
Candidate A & 40.3 & 42.7 \\
Candidate B & 22.5 & 21.4 \\
Candidate C & 16.3 & 18.2 \\
Candidate D & 10.5 & 6.0 \\
Candidate E & 7.2 & 7.4 \\
Candidate F & 3.2 & 4.3
\end{tabular}

How accurate were the polls?
Answer: Number of pairs \(=6\); total error \(\approx 0\); total absolute error \(=11.2\); total squared error \(=\) 32.0800001 ; mean error \(\approx 0\); mean absolute error \(=1.86666667\); mean square error \(=5.34666668\); root mean square error \(=2.31228603\).
2. A new television weatherman lasted only one week at the station. Following are the actual and predicted temperatures during that week:
\begin{tabular}{lcc} 
& \begin{tabular}{c} 
Actual \\
Temperature
\end{tabular} & \begin{tabular}{c} 
Predicted \\
Temperature
\end{tabular} \\
Monday & 74 & 49 \\
Tuesday & 70 & 62 \\
Wednesday & 58 & 75 \\
Thursday & 60 & 82 \\
Friday & 65 & 37 \\
Saturday & 73 & 58 \\
Sunday & 70 & 92
\end{tabular}

What statistics were on the dismissal notice?
Answer: Number of pairs \(=7\); total error \(=15\); total absolute error \(=137\); total squared error \(=\) 2955 ; mean error \(=2.14285714\); mean absolute error \(=19.5714286\); mean square error \(=422.142858\); root mean square error \(=20.5461154\).

\section*{Program Listing}


\section*{Reference}

Gilchrist. Statistical Forecasting. London: John Wiley, 1976.

\section*{Newtonian Interpolation}

This program applies to Newton's forward difference formula for interpolation of a given function. Newton's formula is intended to work when the arguments you use in the interpolation commence just below the argument for which you are seeking the tabular value.

You first enter the independent variables on either side of the value for which you want the tabular value interpolated, followed by that value (your desired independent variable). The program then asks for the precision (in decimal places) you want in your answer. This should not exceed the accuracy of either your original data, or your computer's Basic. The program will cease calculating differences when they drop below this level of accuracy.

You then enter the tabular values immediately below and above the desired tabular value. The program prints out the difference between these values, called the first difference. The program asks for additional tabular values, printing out the new difference each time, until the new difference drops below the level of precision you entered earlier. To end the entry of tabular values before this, you enter 99999 as the new tabular value, and the program will branch to computation of the answer.

\section*{Example}

Bill Miller is going to take out a five-year loan at \(4 \frac{1}{4} \%\). He has a table that shows the factors by which he should multiply the principle of the loan to determine the amount of each monthly payment. Unfortunately, the table only gives figures at half-percent intervals. How should Bill use this program to determine the factor at \(41 / 4 \%\) ?
\begin{tabular}{cc} 
Interest Rate & Factor \\
\(4 \%\) & 0.018416522 \\
\(41 / 2 \%\) & 0.018643019 \\
\(5 \%\) & 0.018871233 \\
\(51 / 2 \%\) & 0.019101162 \\
\(6 \%\) & 0.019332801 \\
\(61 / 2 \%\) & 0.019566148 \\
\(7 \%\) & 0.019801198 \\
\(71 / 2 \%\) & 0.020037949 \\
\(8 \%\) & 0.020276394
\end{tabular}

Answer:
```

 INTEFFOLLATION
 NEWTON`S FORWARI IIFFERENCE FORMILLA
LOWER INDEFENDENT VARIIABLEE ?.04
IFFFEF INDEFENDENT VARIABLEE ?.045
DESTFED INDEFENIENT VAFIAELE ?.042S
FRECISION (IN DEGIMAL FLAGES)?9
ENTEF TAEILARF VALUE AT .04 %.01E416522
ENTER TABULAF VALUE AT .045 ?.018643015
1ET DIFFERENEE = 2.26496595E-04
ENTER TABULAR VALUE AT :05 ?.018E7123%
ZNLIIIFFERENCE = 1.71700231E-06
ENTER TABULAR VALIEE AT .055 %.019101162

```
```

ORII DIFFEFENOE = -1.99361259E-09

```
INTERFOLATION IE TO THE DRDER DF
ERD DIFFERENCES ANSWEF \(=.01852955 S\)

\section*{Program Problems}
1. Jeanne needs to know the sine of 0.63 , using the following table. What is that figure?
\begin{tabular}{l|lllll}
X & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 \\
\hline SIN X & 0.564642 & 0.0644218 & 0.717356 & 0.783327 & 0.841471
\end{tabular}

Answer: The sine of 0.63 is approximately 0.58919079 .
2. Joe Statistics wants to determine the area under the normal curve at 0.095 standard deviation to the right of the mean. From the following table, what is that area?
\begin{tabular}{l|lllll}
\begin{tabular}{l} 
Standard \\
Deviations
\end{tabular} & 0.08 & 0.09 & 0.1 & 0.11 & 0.12 \\
\hline Area & 0.53188 & 0.53586 & 0.53983 & 0.54380 & 0.54776
\end{tabular}

Answer: The area is 0.53784625 .

\section*{Program Listing}
```

10 FFINT " INTEFFOLATION"
20 FRINT "NEWTON"S FDRWARD DIFFERENUE FORMLLLA"
25 FRINT
30 FRINT " LOWEF INDEFENDENT VAFIABLE ":
40 INFITT A(1)
5 0 ~ F F I N T ~ " ~ L I F F E F ~ I N D E F E N D E N T ~ V A F I A B L E ~ " ;
GO INFUT A(2)
70 FRINT "DEEIFED INDEFENDENT VAFIABLE ":
80 INFUT X
90 F=(X-A(1))/(A(2)-A(1))
100 FFINT "FFEEISION (IN DEEIMAL FLAEES) ":
110 INFIIT E
120 IF E = O THEN 140
130E=1/(10*E)
140 = = 1
150 FFINT
160 GOS|B 470
170.1=2
180 G05UB 470
190 IF B(1,.1) = 909%9 THEN 300
200 FOR I = 2 TG .l
210 E(I,0-I + 1) = E(I - 1,O-I + 2)-E(I - 1,! - I + 1)
20% NEXT I
20 FRINT
240 FRINT ,1 -- 1:
250 EOSUE 500
260 FRINT " IIFFEFENCE = ":E(.1.1)
270 IF B (,1,1) < E THEN 3OO
20 1 = 1 + 1
290 IF | < = THEN 180
300 z = 0

```
```

310 F1=1
20 X = 1
30 FOF I = 1 TO E
340 X = X * I
250 F1=F1 * (F-I + (F)
Z0 Z = Z + FI * E(I + 1,1) / X
Z70 NEXT I
\XiO IF A(2) ` A(1) THEN 410
8%O Z = E(1,1)-Z
400 EIOTO 420
410Z Z E (1,1) + Z
420 FFIINT "INTEFFOLATIGN IE TO THE GFLEF GF"
4%0 FFINT !- - 1;
440 GOGUE 5OO
450 FFINT " LIFFEFENLES ANSWEF: = ":Z
460 EOTO 5%O
46% FEM ELBFIOUITINE TII ENTEFI TABIILAFI VALUES
470 FFINT "ENTEFT TABUILAF VALIIE AT ";A(1) + (,1-1) * (A(2) - A(1));" ";
480 INFIUIT E(1,,1)
4%0 FETIIFN
49% FEM FUGIITINE TE FFINT "ET", "NL", ETE
500 IF , | < % 2 THEN 520
510 FFINT "ST":
50 IF ,I< % S THEN 540
5% FFINNT "NL";
540 IF , < < % THEN 560
55O FFINT "FIL"
560 IF , = THEN 5GO
E70 FFIINT "TH":
EGO FETIIFN
590 ENII

```

\section*{References}

Hildebrand, F.B. Introduction to Numerical Analysis, 2nd. ed. New York: McGraw-Hill, 1974.
National Bureau of Standards. Handbook of Mathematical Functions. Washington, D.C., 1976.
Phillips, G. M., and Taylor, R.J. Theory and Applications of Numerical Analysis. New York: Academic Press, 1973.
Scheid. Numerical Analysis. New York: McGraw-Hill, 1968.

\section*{Lagrangian Interpolation}

This program applies Lagrange's formula for interpolation to a given function. For each succeeding tabular value you enter, the program displays the corresponding difference. Starting with the second difference, you may either calculate the interpolated value or proceed to the next order of difference. If you go on, you have one more option at each succeeding order of difference, and that is to back up to calculate the interpolated value on the previous order of difference. This effectively lets you take an uncommitted look ahead to see whether the next order of difference is smaller than the present one. Thus, you need not choose the order of difference beforehand. The program permits three-point through ten-point Lagrangian interpolation.

The program first asks you for the central argument, which is the argument immediately below the one you want. It also requests the next higher argument listed in the table, and your desired argument. You must then enter tabular values for the central argument and the arguments on either side of the central argument. The program calls these values \(f_{0}, f_{1}\), and \(f_{-1}\), respectively.

At this point the program displays the first and second differences. You have the option of stopping here with three-point interpolation, or going on to the higher orders of difference. If you go on you must enter, one at a time, tabular values \(\mathrm{f}_{2}, \mathrm{f}_{-2}, \mathrm{f}_{3}, \ldots, \mathrm{f}_{5}\). As you make each entry, the program displays the next higher difference. You must decide whether to stop and interpolate based on that difference, back up to interpolate on the previous difference, or proceed to enter another tabular value. You can only proceed as far as the ninth difference, since the program calculates at most a ten-point interpolation.

\section*{Program Notes}

The program employs the algorithm set forth by Pearson for simplifying the Lagrangian coefficients, thus precluding the need for coefficient tables. The program also disregards the remainder term in Lagrange's formula. Finally, the program does not perform two-point interpolation, since it is of little use.

\section*{Example}

Using the following table, determine the sine of 1.00006 radians.
\begin{tabular}{ccc}
\begin{tabular}{c} 
Angle X \\
in Radians
\end{tabular} & \begin{tabular}{c} 
Tabular Value \\
Sin X
\end{tabular} & \begin{tabular}{c} 
Name of \\
Tabular Value
\end{tabular} \\
0.996 & 0.8393030496 & \(\mathrm{f}_{-4}\) \\
0.997 & 0.8398462937 & \(\mathrm{f}_{-3}\) \\
0.998 & 0.8403886980 & \(\mathrm{f}_{-2}\) \\
0.999 & 0.8409302619 & \(\mathrm{f}_{-1}\) \\
1.000 & 0.8414709848 & \(\mathrm{f}_{0}\) \\
1.001 & 0.8420108663 & \(\mathrm{f}_{1}\) \\
1.002 & 0.8425499058 & \(\mathrm{f}_{2}\) \\
1.003 & 0.8430881027 & \(\mathrm{f}_{3}\) \\
1.004 & 0.8436254565 & \(\mathrm{f}_{4}\) \\
1.005 & 0.8441619667 & \(\mathrm{f}_{5}\)
\end{tabular}

\section*{IAGFANGIAN INTEFFGILATIUN}

ENTEF THE EENTFAL AFIGMENT, NEXT HTGHEF:
AFIGIMENT, ANII THE MEEIFEII AFIGMENT
\(\because 1,1,001,1,0006\)
ENTEF \(F(0) \quad \because, 541470965\)
ENTEF \(F(1) \quad \because \approx 4201066\)
ENTEF \(F(-1) \quad \because, 440902\)
ITFFEFENIE \# \(1=5,99 E 141 E O 4\)
IIFFEFENEE \# \(\because=E 41217116 E-07\)
III YOUI WANT FUFTHEF GTFFEFENIEEO
( \(Y / \mathrm{N}\) ) \(\because Y\)
ENTEF F \(\because\) ( \(\because \quad 34254996\)
IIFFEFENIE \(\#=3=4.66612 G E-10\)
WANT FIIFTHEF IITFFEFENOES?
\(Y E S(Y), N O(N), ~ G N E\) LEEG (L) \(\because Y\)

IIFFEFENEE * \(4=2,2690644 E 10\)
WANT FUFTHEF IITFFEFENGESO
YES(Y), NG(N); ■NE LEES(L) \(\because Y\)
ENTEF \(F(\because) \quad \because, ~ \because 4 Z O G 10 \%\)
MIFFEFENEE \(\ddagger 5=2,2980644 E-10\)
WANT FUFTHEF IITFFEFENEESO
\(Y E S(Y), N Q(N)\), DNE LESE(L) \(\because N\)
LAGFANETAN G-FWINT INTEFFOLIATIGN
FFOMUEE A UALUE OF \(\because 4179 E 15\)

\section*{Practice Problems}

1 . What is the sine of 1.0001 radians?
Answer: 0.841525014
2. To ten places, the mantissas of the common logarithms of certain arguments are shown below:
\begin{tabular}{cccc} 
Argument & \multicolumn{3}{c}{ Mantissa } \\
6.1242 & 0.787 & 0493 & 652 \\
6.1243 & 0.787 & 0564 & 565 \\
6.1244 & 0.787 & 0635 & 478 \\
6.1245 & 0.787 & 0706 & 390 \\
6.1246 & 0.787 & 0777 & 300 \\
6.1247 & 0.787 & 0848 & 209
\end{tabular}

What is the common logarithm mantissa for 6.12449?
Answer: 0.787069729

\section*{Program Listing}
```

EFFTNT "LALFANGIAN JNTEFFILATIGN"
7 FFINT
10 [M|M [10,10), E(10),F(10,10),N(4):E(10)
15!(1)=1
OF(1,1)=1.
FG FEM EET UF INITIAL TAELES IF VALIIES
OO FDFE I = 2 TG10

```
```

40F(I,I)=EGN (I. (2-INT (I. (2) - .1.)
50 FOFi = = TII
OWF=INT ((I + I) / 2) - (I + .1) / 2 + 0. I
GF(I,M)=(AES (F(I-1,!-1))+ABE (F(I - 1,M))) * SGN (WF)
70 NEXT .I
BO(I)=G(I-1) * (I - - 1)
OO NEXT I
1OO FFINT "ENTEF THE EENTFAL. AFIINMENT: NEXT HIGHEF"
110 FFINT "AFGIMENT, ANL THE LUESTFEL AFGIMENT"
120 INFIUT XI,X2,X%
1OFF=(XZ-X1) / (X2-X1)
140 IF F % GFF F % 1 THEN 100
160 FFTNT "ENTEFF F(0) "%
170 INFUTT [M(1,1)
1BO FFINT "ENTEF F(1) ":
1%0 INFUIT [I(2,1)
ZOO FFTNT "ENTEF F(-1) ":
Z10 INFUT [I(%,1)
20 I(1,2)=ABS (LI(2,1) - ח(1,1))
ZO FFINT "LIFFEFENIE \# 1 = ":M(1,2)
20 ח(2,Z)= AES (D(Z,1) - ח(1,1))
2O [I(1,\#)=AES ([1(2,\#)-[口(1,Z))
2OO FRINT "MIFFEFENGE \# 2= "\#M(1,%)
ZG FEM GIVE GFEFATGF GFTIGN GF STGFFING NOW GF GMNTINLING
Z70 FFINT "DIO YOUI WANT FUFTHEF IIFFEFENIEG?"
Z75 FRTNT "(Y/N) ":
ZGO INFIIT Y\$
20 I = 3
ZOO IF Y多 = "N" THEN 570
\#10 IF Y家 < "Y" THEN Z70
20 I = I + 1
SO FFINNT "ENTEF F(":
\#40 IF I / 2=INT (I / ב) THEN %GO
B5O FFINT "--"%
\#%OFFINT INT (I / 㤩):") "%
370 INFUIT II(I,1)
ZO FGF ., = 1 TOI] - 2

```

```

400 NEXT .l

```

```

4ZO FFINT "IIFFEFENIE \# ":I - 1;" = ";LI(1,I)
4玉 IF I = 10 THEN 510
4:0 FFINT "WANT FIFTHEF IUTFFEFENIES%"
440 FFINT "YES(Y), NO(N); GNE LESE(L) ":
450 INFIIT Y婁
4SG FEM WFEFATOFZ MAY ETOF NOW, GONTINIE:
4SG FEM DFE GOM EAG\& TO BNE LESS IOTFFEFENOE
460 IF Y* = "N" THEN 570
470 IF Y方 = "Y" THEN O2O
480 IF Y主 < % "L" THEN 4%O
4%0 I = I - 1
500 EIGTO 570
SOG FEM NO MOFE THAN NINE IIFFEFENOES FGSEIELE
S10 FFINT "WANT NINTH IIFFEFENIEE (N), GF"
SO FFINT "ONLY ETGHT IIFFEFENEE (E) ":

```
```

5 \% 0 ~ I N F U T ~ Y ~ \ ~ \$
540 IF Y专 = "N" THEN 570
550 IF Y\$ < > "E" THEN 510
560 I = I - 1
SGS FEM LINES 570 TO 630 SET UF VARTABLES
SG% REM ISED IN FEAFGONGS ALGORITHM
570 N(1) = F* - F F
50 N(2)=N(1)* (F*2 - 4)
590 N(3) = N(3)* (F*2 - 16)
610 FOF = = 1 TO 10

```

```

60 NEXT .I
640 FOF .l = 1 TO I
650T T T T + E(INT ((10-I) / 2) + .I) * F(I,I)
66O NEXT .l
670 IF I / 2 < % INT (I / 2) THEN 690
6EOT = T * (F - I / 2)
6%O FFINT "LAGFANGIAN ":I:"-FOTNT JNTEFFOLATION"
700 FRINT "FRODUEES A VALUE OF ":T * N(INT ((I - 1) / 2)) / G(I)
710 ENL

```

\section*{References}

National Bureau of Standards. Handbook of Mathematical Functions. Washington, D.C., 1966.
Scheid. Numerical Analysis (Schaum's series). New York: McGraw-Hill, 1968.
Vega. Vollständige Sammlung grösserer logarithmisch-trigonometrischer Tafeln. 1794. Reprint. New York: Hafner, 1958.

\section*{Sums of Powers}

This program calculates the sum of the Pth powers (up to the 10th powers) of the first N integers. It will also compute the sums of powers which are not the first N integers, but instead a series of higher integers. For example, if you want the sum of squares of numbers 101 to 1,000 , subtract the total of the first 100 squares from the total of the first 1,000 .

\section*{Program Notes}

Clearly, a simple algorithm exists for computing the sums of powers: a loop with provision for adding the successive powers obtained. When you want the sum of very lengthy series of integers, the methods in this program are more efficient.

\section*{Example}

What is the sum of the first ten 7th powers?
Answer: 18,080,425
Sum of Fowers
THIS FRGGRAM COMFUTES THE SUM OF THE F-TH FOWERS (LIMIT: 10) FOR THE FIRST
N INTEGERS. ENTER F AND N 77,10
THE SIM OF THE 7TH FOWERS OF
THE FIRST 10 INTEGERS IS 18080425

\section*{Practice Problems}

1 . What is the sum of the first 1005 th powers?
Answer: 1.717083335 times \(10^{11}\).
2. What is the sum of the first six 10 th powers?

Answer: 71,340,451.1
3. What is the sum of the squares of the numbers from 101 to 1,000 ?

Answer: 333,495,150

\section*{Program Listing}
```

5 FRINT "SUM OF FOWERS"
7 FRINT
10 FRINT "THIS FROGRAM EOMFUTES THE SUM OF THE"
15 FRINT "F-TH POWERS (LIMIT: 10) FOR THE FIRST"
20 FRIINT "N INTEGEFS. ENTEF F' AND N ";
30 INFUIT P,N

```
```

32 F = INT (F)
35 IF F < 1 OR F > 10 THEN 10
O% REM BRANCH TO FROFEF FOWEF
40 IF F = 1 THEN 50

```

```

42 IF F = 3 THEN }9
43 IF F = 4 THEN 110
4 4 ~ I F ~ F ~ = ~ 5 ~ T H E N ~ 1 3 0 ~
45 IF F =6 THEN 150
46 IF F = 7 THEN 180
4 7 ~ I F ~ F ~ = ~ छ ~ T H E N ~ 2 1 0 ~
4s IF F = % THEN 240
49 IF F = 10 THEN 270
50 S=N* (N+1)/2
5 5 ~ F F I N T ~ " T H E ~ S L I M ~ O F ~ T H E ~ F I F S T ~ F O W E F S ~ O F " ~
60 GOTO 380
70 E N N (N+1) * (2*N+1)/G
75 FRINT "THE SIMM OF THE SECOND FOWERS OF"
E0 GOTO S80
90 = (N*2)* ((N+1) " 2) / 4
95 FRINT "THE SUM OF THE THIFD FOWERS IF"
100 GOTO SEO
110\Xi=N*(N+1)* (2*N+1)*(3*N*2+3*N-1)/30
120 GOTG 370
130 E= (N*2)* ((N+1)*2)* (2*N*2+2*N-1)/12
140 GOTO 370
150 51=(2*N+1)*(3*N*4+6+N*3-3*N+1)
160 S = N * (N + 1) * S1 / 24
170 GOTO 370
180 B1= \#*N*4+6*N*3-N*2-4*N+2
190E=(N*2)* ((N+1)*2) * S1/ 24
200 GOTO 370

```

```

 N-Z
 220 S = N * (N + 1) * (2 *N + 1) * 51 / 90
2%O GOTO 370

```

```

2505=(N*2) * ((N + 1) * 2) * 51 / 20
260 GOTO 370
27052=3*N*E+12*N*7+E*N*6-1E*N*5
280 51= S2-10*N*4 + 24*N*3 + * *N*2 - 15*N+5
290 S = N * (N + 1) * (2 *N + 1) * S1 / 06
300 GOTG 370
370 FRINT "THE SLIM OF THE ";F;"TH FOWERS OF"
3E0 FRINT "THE FIRST ";N:" INTEGERS IS ":S
8%0 END

```

\section*{Reference}

Chemical Rubber Co. Handbook of Tables for Mathematicians, 4th ed. Cleveland: 1970.

\section*{Factorials}

This program calculates the factorial of an integer. For the factorial of a small number N we recursively multiply the integers from 1 through N. For larger numbers this becomes impractical, and we instead use Stirling's approximation:
\[
\mathrm{N}!\simeq e^{-\mathrm{N}} \mathrm{~N}^{\mathrm{N}} \sqrt{2 \mathrm{~N} \pi}
\]

This has very high accuracy for large N .

\section*{Program Notes}

Note that for any given computer there is a theoretical limit beyond which overflow cannot be avoided.

\section*{Example}

How much is \(8!?\)
Answer: 40320
FACTORIALS
ENTEF THE NUMBEF WHOSE
FACTORIAL YOU WANTGE
THE FACTORTAL OF \(E\) IE
40320
TIMES 10 TO THE FOWEF O COMFUTED RECURGTVELY

\section*{Practice Problems}

1 . How much is 100 !?
Answer: \(9.32484812 \times 10^{157}\)
2. What is the factorial of 20 ?

Answer: \(2.43290201 \times 10^{18}\)
3 . How much is 141 !?
Answer: \(1.89702238 \times 10^{243}\)

\section*{Program Listing}
```

5 ~ F R I N T ~ " F A D T O F I A L S " ~
7 FRINT
10 FFINT "ENTEF THE NUMEEF WHOSE"
15 FFINT "FALTORTAL YOU WANT";
20 INFUT N

```
```

30 F=1
5 0 ~ I F ~ N ~ > ~ 6 \% ~ T H E N ~ 1 5 0 ~ 0
Sg FEM EALIULATE IGING REGURGIVE ALGORITHM
60 FOF I = 2 TO N
70 F=F *II
EO IF F < IE + 10 THEN 120
100 F = F / (1E + 10)
110.1 = - 1 + 10
120 NEXT I
130 GOTO 300
149 FEM GALOULATE USING STIFLING` AFFFOXIMATION 150K=1NT (N/E) 160 I = I + 5 170 IF I > < * S THEN 2EO 180 FF = (F *N 人 S) / EXF (E) 190 IF F > 1E + 80 THEN 220 200 IF FF > 1E + 20 THEN 250 210 GOTO 160 20 F=F / (JE + OO) 20 1 = . 1 + 30 240 GOTQ 190 250 F = F / (1E + 20) 260 | = J + 20 270 GOTO 1%0 200 X = S0F (N * 6.2851856071E) 2%OF= (F*N* (N-K*E))/EXF (N-K*E)* X SOO FRINT "THE FALTORIAL OF ":N:" IS" 310 FRINT F 20 FRINT "TIMES 10 TO THE FOWEF ":, 30 IF & % O THEN S60 340 FRINT "COMFUTED REGURSIVELY" 350 GOTO 370 EGO FRINT "GOMFUTED EY ETIFLING`S AFFFOXIMATION"
370 ENG

```

\section*{References}

Korn \& Korn. Mathematical Handbook, 2nd ed. New York: McGraw-Hill, 1968.
National Bureau of Standards. Handbook of Mathematical Functions. Washington, D.C., 1966.

\section*{Temperature Conversion}

Chemists, physicists, and other scientists are constantly involved in taking temperatures in one scale and converting them to other scales. In science, temperatures are commonly recorded and manipulated in five scales: Fahrenheit, Celsius (formerly called centigrade), Réaumur, Kelvin, and Rankine. This program takes any temperature (above absolute zero) recorded in any scale and converts it into all four of the other scales.

\section*{Example}

Convert \(98.6^{\circ}\) Fahrenheit into the other scales.
TEMFERATIRE EONVERSION
WHAT IS THE TEMFERATIURE WHIOH
YOU WIEH TO BE CONVERTED? \(9 E .6\)
IN WHAT SLALE WAS THAT RECORDED:
ENTEF 1 FGR FAHFENHEIT, 2 FOR
CELSIUS, 3 FOR REAUMUR, 4 FQR
KELUIN, 5 FOR RANKINE ?1
98. 6 DEGREES FAHRENHEIT =

37 DEGREES EELSIUS
29.6
310.1
558.18

DEGREES REAUMIUF
DEGREES KELVIN
DEGREES FANKINE

\section*{Practice Problems}
1. The boiling point of water is \(100^{\circ}\) Celsius. What is it on the other scales?

Answer: \(212^{\circ}\) Fahrenheit, \(80^{\circ}\) Réaumur, \(373.1^{\circ}\) Kelvin, \(671.58^{\circ}\) Rankine.
2. Lonna keeps her hot tub at \(104^{\circ}\) Fahrenheit. How hot is it on the other scales?

Answer: \(40^{\circ}\) Celsius, \(32^{\circ}\) Réaumur, \(313.1^{\circ}\) Kelvin, \(563.58^{\circ}\) Rankine.

\section*{Program Listing}
```

5 FRINT "TEMFERATIRE EONVEFSION"
7 FRINT
10 FFINT "WHAT IS THE TEMFERATINE WHIEH"
20 FRINT "YOU WISH TO BE GONVERTEIT? ";
OO INFIIT T
40 FFINT "IN WHAT SCALE WAS THAT FEEOFDEDT "
5 0 ~ F R I N T ~ " E N T E R ~ 1 ~ F O R ~ F A H R E N H E I T , ~ 2 ~ F O R " ~
6O FFINT "CELSIUE, З FOR REAUIMUR, 4 FOR"
70 FRINT "KELVIN, 5 FOR FANKINE ";
EO INFUT S
90 S = INT (S)

```
```

100 IF S % THEN 40
110 IF 5 5 THEN 40
119 FEM EFANOH GN TYFE IF ELALE
120 IF S = 1 THEN 130
121 IF % = 2 THEN 170
12% IF = = THEN 210
12 IF % = 4 THEN 250
124 IF 5 = 5 THEN 200
130 IF T < - 459.5G THEN 420
140 T1 = T
150 FFIINT T;"LIELREES FAHFENHEIT ="
160 GIOTO \$40
170 IF T < - 27\Xi.1 THEN 420
1EOT1=22+T * 1,E
1%O FFINT T,"LELFEES IELSIIS ="
OO EIOTG 32O
Z10 IF T < - 21S.4E THEN 42O
20T1=32+T * 2-25
20 FFINT T; "LELIFEES FEAUMIIF" ="
240 GMTG =20
250 IF T < O THEN 420
200T1=32+1』\Xi * (T - 273n1)
270 FFINT T,"LEGFEES \&ELUIN ="
280 GIOTG 320
20 IF T < O THEN 420
300 T1 = T - 45%,5%
310 FFIINT T,"LIEGFEES FIANKINE ="
20 FFINT T1,"LIEGREES FAHFENHEIT"
30 IF = = THEN \XiSO
30 FFINT 5 * (T1 - シ2) / %,"LEGFEES EELSILE"
350 IF S = 3 THEN 390
\#00 FFIINT 4 * (T1 - %2) / %, "LEGFEES FEAIMMIN"
30 IF S = 4 THEN 400
30 FFINT 5 % (T1 - З2) / % + 27S.1,"MEGFEES FELVIN"
30 IF 5 = 5 THEN 450
4OO FFINT T1 + 459.5E;"[IEIFEES FANNEINE"
410 GOTO 450
420 FFiINT "TEMFEFIATLFE YOUI ENTEFEN [MOE NOT"
430 FRINT "EXIST. FLEASE ENTEF A NEW DNE"
440 EMTO 10
450 ENII

```

\section*{Reference}

Lange. Lange's Handbook of Chemistry, 10th rev. ed. New York: McGraw-Hill, 1967.

\section*{Numeric Base Conversion}

This program will convert numbers between any two bases 2 through 36 . The program will continue to convert values from and to the same bases until you enter zero as the value to convert. Then you can enter a new base to convert to, still using the previously entered base to convert from. If you enter zero as the base to convert to, you must enter a new base to convert from. Enter zero at this point to end the program.

\section*{Program Notes}

You may convert between a base greater than 36, as long as you define the characters to represent values greater than 35 . To do this, add the character (s) you choose between the Z and the closing quotes in line 30. For example, to convert to base 37 , we'll represent the number 36 with the character \#. Change line 30 so that it reads:
\[
30 \mathrm{~N} \$=\text { " } 0123456789 \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \mathrm{\#} "
\]

Signs, decimal points, and any other characters you enter as part of the value to be converted that are not included in the chapter representations for the FROM base you selected are interpreted as zeros wherever they appear.

Note that because the value you enter is converted to its base 10 value, which is stored in the numeric variable D , accuracy of the output value is limited by the accuracy of your computer. This is also true because of the repeated division used in the conversion process.

You may encounter problems using this program on your computer because of the use of string variables. See the Appendix of this book for information on conversion of programs which use string variables.

\section*{Example}

What is the base 16 number ABCD in base 10 ? What is the base 8 value? What is the base 36 equivalent of the base 10 number 825,062 ?

Answer: ABCD base 16 is 43,981 base 10 . The base 8 value is \(125,715.825,062\) base 10 is HOME base 36.

NLMERIC BASE CONVEREION
```

FFOM BAgE (0 TG END) ?16

```
TU EASE 210
VALIIE \(\Rightarrow A B C D\)
AEDL baEE 16 IS \(4 g 9 \mathrm{~g} 1\) bage 10
VAluE \%O
TO BASE TE
value pabcd
ABCI BASE 16 IS 125715 bASE 8
value \%o
TO BAEE \%
FFOM BASE (o TG END) 210
TO EASE 96
VALUE 925062

525062 EASE 10 IS HOME BASE 36
VALUE OO
TO BASE OO
FFOM EASE (O TO END) OO

\section*{Practice Problems}
1. What is the base 16 representation of the base 10 number 45 ? What is the base 8 representation? Answer: 45 base 10 is 2D base 16.45 base 10 is 55 base 8 .
2. What is the base 32 representation of the base 18 number 1G6? What is the base 10 value? Answer: 1G6 base 18 is JA base 32. 1G6 base 18 is base 10 .

\section*{Program Listing}

10 FFINT "NUMEFIE BASE GONVEFGTON"
20 FRTNT
30 N * \(=\) "O1234567E9ABGDEFGHI.MLMNOFQFETIUWXYZ"
40 FEM - - VAFTABLE N IS THE HTGHEST
45 FEM -- BASE YOUI MAY GONVEFT FFOM / TO
\(50 M=L E N\) (Nま)
60 FRINT "FFOM EASE (O TO END) ":
70 INFIT EI
EO FEM -- END FROIGAMO
90 IF E1 \(=0\) THEN 450
100 FEMM -- TEST FOF VALIIU INFUT BASE
110 IF E1 1 THEN 140
120 FFINT "EASES 2 THFOUGH ":M:"ONLY: EELEET AGAIN. "
130 GTTO 60
140 IF EJ \(\%\) M THEN 120
150 FFINT "TO EASE ";
160 JNFUT B2
170 IF E2 \(=0\) THEN 60
150 FEM --- TEST FOR VALIL OUTFUT EASE
190 IF E2 > 1 THEN 220
200 FFINT "BASES 2 THFOUGH ":M:" DNLY. SELEET AGAIN."
210 GOTO 150
22 IF E2 \(>\) M THEN 200
\(2 \Xi O\) FFTNT "VALUE ":
240 INFUT V\$
250 IF \(V=0\) "0" THEN 150
260 FEM - FIFST, GONVEFT JNFUT VALUE TO BASE 10
\(270 \mathrm{~L}=\mathrm{LEN}\) (V \({ }^{\circ}\) )
\(280 \square=0\)
290 FOR \(\mathrm{I}=1 \mathrm{TO} \mathrm{L}\)
300 FOF \(1=1\) TO B1

\(30 \square=\square+\operatorname{INT}((1-1) *(E 1 *(L-I))+0.5)\)
3OO NEXT ,
340 NEXT I.
SEO FEM -- NOW CONVEFT EASE 10 VALUE TO
35 FEM --- DESIFED DUTFUT BASE
360 口 \(=" "\)
```

70 X = INT (((D/B2) - INT (D/EQ))*EZ + 1.5)
S0 口\$ = MTL\$ (N$,X,1) + 口$
590 [= INT ([I / B2)
400 IF 口 % O THEN }37
4 1 0 ~ F E M ~ - - ~ D U T F U T ~ T H E ~ R E S U L T T

```

```

40O FEM -- LDOF EAOK TG ENTEF ANOTHEF VALUE
440 हीT\# 200
450 END

```

\section*{Musical Transposition}

In music, transposition is the art of playing music in a different key from that in which it was written. Some musicians can transpose by sight or by ear; others have to convert each note from one key into another, laboriously, one by one. This program is for those in the latter group. The notes transposed by this program can be used as the roots of harmonies for piano, guitar, and so forth, as easily as they can be used as single notes.

The program first displays all the keys and key signatures, comprising seven flats through seven sharps, with their identifying numbers. You enter the numbers for the keys from which and to which you are transposing. The program then displays each of the 12 possible notes, along with their transposed equivalents.

Note that the program will in all cases print out the correct pitch of the note it is transposing to, and in virtually all cases the correct name as well. However, in those rare cases of some minor keys with multiple accidentals, you may have to supply the alternate name where a double accidental (double sharp or double flat) is called for.

\section*{Example}

What do notes in the key of \(B^{b}\) become when you transpose to the key of \(G\) ?
Answer:
MUSIUAL TFANSFGEITIUN
```

IN THE FOLLOWING LIST OF KEYE

```
AND KEY ETGNATUFES:
1. A MA. IGF/F-SHARF MINOR-E EHARF
2 E B-FLAT MA.MGF/G-MINDF-2 FLATE
玉. E-FLAT MAUG/A-FLAT MINDE-7 FLATE
    E-MAMGR/G EHARF MINDF-5 SHARFS
4. \(\because\) MA JOR/A MINOR-ND EHAFFS DR FLATE
E. I-FLAT MAMERE-FLAT MTNDF-5 FLATS
    I-SHAFF MA IOF/A-SHARF MINDF - 5
    EHARFS
6. I MAMOR/E MINOF--2 EHAFFS
7. E-FLAT MA IDR/E MINDF-S FLATE
E. E MA.MF/E-SHAFF MINOR-4 EHAFFS
\(\because\) F MA.MF/ MTNOR-1 FLAT
10. G-FLAT MAJOF/E-FLAT MINOF-G FLATE
    F-SHARF MA MOF/ I-SHARF MINOF- 6
        SHARFS
11: G MAMF/E MTNDR-1 SHARF
12. A-FLAT MAMORF MINOR-4 FLATE
ENTEF THE NO DF THE KEYS FFOM WHIEH
YOU GRE TRANGFQSTNG: THEN THE NO. OF
THE KEY TO WHTCH YOU AFE TRANEFOSTNG:
2. 11
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TFANSFOSITIUN TABLE} \\
\hline TRANSFOSEI & TFANSFGSEM \\
\hline FFOM & TII \\
\hline A & G-FLAT/F--EHARF \\
\hline B-FIAT/A SHAFP & \(\square\) \\
\hline B (E-FLAT) & A-FLAT / G--EHARF \\
\hline (E) (E-EHAFF) & A \\
\hline [-FLAT/G-SHARF & B-FLAT / A - Bharf \\
\hline \(\square\) & E (G-FLAT) \\
\hline E-FLAT/O-SHAFF & E (E-SHARF) \\
\hline E (F-FLAT) & [-FLAT/E-SHAFF \\
\hline \(F\) (E-SHAFF) & \(\square\) \\
\hline G-FLAT/F--GHAFF & E-FLAT/L-SHARF \\
\hline \(\square\) & E (F-FLIAT) \\
\hline A FLAT/GEHARF & \(F\) (E-EHAFF) \\
\hline
\end{tabular}
[O YOU WANT ANOTHEF TFANEFOETTIONG (Y/N)
N

\section*{Practice Problems}
1. In the key of G, the first chords of "My Country 'Tis of Thee"' are: G, Em, C, D, G, Em, C, G, B", \(\mathrm{E}^{\mathrm{m}}\). If it is transposed to E , what would these chords be?

Answer: E, C \({ }^{\# m}, A, B, E, C^{\# m}, A, E, G^{\# 7}, C^{\# m}\).
2. Bach's Fifth Brandenburg Concerto, written in D major, begins: \(\mathrm{D}, \mathrm{D}, \mathrm{F}^{\#}, \mathrm{~F}^{\#}, \mathrm{~A}, \mathrm{~A}, \mathrm{D}, \mathrm{D}, \mathrm{C}^{\#}, \mathrm{D}\), \(C^{\#}, B, A, G, F^{\#}, E\). If he had written it in \(C\) major what would these notes have been?

Answer: C, C, E, E, G, G, C, C, B, C, B, A, G, F, E, D.

\section*{Program Listing}
```

E FRINT "MUSICAL TFANEFOEITION"
7 FRINT
10 [IM Aक(12)
19 FEM FEAD TABLE OF NOTEE
OO FOF I = 1 TG 12
OO FEAD A\$(I)
40 NEXT I
SO DATA "A","B-FLAT/A SHAFF","B (G-FLAT)","E (E-SHARF)"
60 DATA "D-FLAT/L--SHAFF","口","E-FLAT/[-SHARF","E (F-FLAT)"
70 DATA "F (E-SHAFF)","G-FLAT/F-SHARF","G","A-FLAT/G-SHARF"
ZO FRINT "IN THE FOLLOWING LIET OF KEYS"
%90 FRINT "ANL KEY EIGNATUFES,"
3OO FRTNT "1. A MAMOR/F-EHARF MINDR-S EHARF"
\#O FFINT "2. B-FLAT MANOF/G-MINGF-2 FLATS"
30 FRINT "\Xi. E-mFLAT MA.MR/A FLAT MINOR-7 FLATE"
O5 FFINT " E-MA.INF/G EHAFF MINGF-5 EHARFS"
30 FFINT "4. G MAUOF/A MTNOR-NG SHARFS DR FLATS"

```
```

340 FRINT "S. D-FLAT MAMF/E-FLAT MTNGR-5 FLATS"
345 FRINT " G-GHARF MAUOR/A-SHARF MTNOR-5"
347 FFINT " EHARFS"
5SO FFINT "6. \square MA.IDF/E MINOR-2 EHARFE"
360 FRINT "7. E-FLAT MAMEIE MINOR-S FLATS"
370 FRINT "G』 E MAUIORE--GHAFF MINOR-4 SHAFFS"
EBO FRINT "G. F MAMFF/D MINDF-1 FLAT"
390 FRINT "10. G-FLAT MAMFEEFLAT MTNOR-G FLATE"
SG FRINT " F-SHAFF MAMOR/L-SHAFF MINDR-G"
397 FRINT " SHAFFE
400 FRINT "11. G MAMR/E MINOR-1 SHAFF"
410 FRINT "12. A-FLAT MAMORF MINOR-4 FLATS"
450 FFINT "ENTEF THE NO. DF THE FEYS FFOM WHICH"
460 FFINT "YOU AFE TFANGFISING, THEN THE NO. GF"
470 FFINT "THE KEY TQ WHIUH YOU AFE TRANEFOETNG"
480 INFIIT A.B
500 FFINT
510 IF $A>12$ OF $B>12$ OF $A<1$ OR $B<1$ THEN GO
610 IF $A<>E$ THEN 710
62 FFTNT "EFFOR: FLEASE ENTEF AGAIN"
650 GUTU 450
710 FRTNT " TFANSFWSITIUN TABLE"
720 FRINT " TRANEFQEEL": TAB(20):"TRANSFOGED"
730 FFINT TAB(4):"FFOM": TAB(24):"TG"
$740 \mathrm{~F}=0$
749 FEM FRINT TABLE
750 FOF I = 1 TG 12
$755 \mathrm{D}=\mathrm{B}-\mathrm{A}+\mathrm{I}-5 \mathrm{MN}(\mathrm{INT}((\mathrm{B}-\mathrm{A}+\mathrm{I}) / 12))+12$
757 IF ■ $\%$ O THEN 760
$758 \mathrm{~L}=12$
760 FFINT Aw (I): TAB(20):A末(D)
$770 \mathrm{~F}=\mathrm{F}+1$
780 IF F / 3 < \geqslant INT (F / 3) THEN E10
790 FRINT
$800 \mathrm{~F}=0$
E1O NEXT I
E2 FRINT
EGO FFINT "DG YOU WANT ANGTHER TFANEFQEITIONZ (Y/N)"
E40 INFUTT Yक
ESO IF Y $=$ "Y" THEN 2 O 0
860 ENL

```

\section*{References}

Pistan. Harmony, 3rd ed. New York: Norton, 1969.
Priesing and Tecklin. Language of the Piano. Boston: Carl Fischer, 1959.

\section*{Appendix}

Here in the appendix you will find suggestions for changing the programs to accommodate different output devices.

We describe each of the specific changes listed below in a general way and illustrate wherever possible with an example taken from the book. You must decide how a suggested change would apply to any particular program, if at all. Therefore, you will need some understanding of Basic programming in order to implement these changes.

\section*{Pausing With Full Display Screen}

Many programs have more lines of output than will fit on a typical screen. This means the first lines of output flash by quickly and scroll off the top of the screen, leaving you with no idea of what they contained. On the Apple II, you can press the CONTROL and S keys simultaneously to freeze the display temporarily. You can then review and record anything on the display. Subsequently pressing any key other than the CONTROL key sets the computer in motion. More program output appears. You may have to freeze the display several times in order to see all the output. The number of times you must freeze the display depends not only on which program you are running, but also on the nature of the problem you present it with.

Alternatively, you can modify a program so that it pauses at one or more points during its output, waiting for the user to cue it to continue. To do this, add the following subroutine to the program, and call the subroutine at suitable intervals during the output phrase of the program.
```

5799 REM WAIT FOR OPERATOR CUE
5800 PRINT "ENTER 'C' TO CONTINUE"'
5 8 1 0 INPUT W\$
5820 RETURN

```

This technique is used in the Income Averaging program. In programs where some or all of the output occurs inside a loop (for example, between FOR and NEXT statements), you may not be able to merely place calls to this subroutine between appropriate PRINT statements, as we did in the Income Averaging program on lines 1890,2010 , and 2110. In this case, use the subroutine below, which counts the number of lines displayed since the last pause. Each time you call this subroutine, it increments a counter, and tests to see if the new count exceeds the size of the display. If so, it pauses for the operator cue. Otherwise, it simply returns to the calling point in the program. Therefore, you would insert a call to this subroutine immediately after every PRINT statement that causes a line of output (that is, a PRINT statement not ending with a comma or semicolon).
```

5 7 9 7 REM SUBROUTINE CHECKS LINE COUNT
5798 REM WAITS FOR CUE IF DISPLAY IS FULL
5 7 9 9 REM FIRST INCREMENT AND CHECK LINE COUNT
5800 L9 = L9 + 1
5810 IF L9 < }20\mathrm{ THEN }585
5819 REM SCREEN IS FULL - -
5820 PRINT '"ENTER 'C' TO CONTINUE';
5 8 3 0 ~ I N P U T ~ W \$ ~
5839 REM RESET LINE COUNT
5840 L9 = 0
5850 RETURN

```

\section*{Printer Output}

Viewing program output on the display screen is perfectly acceptable when you are using a program as an experimental or investigative tool. But sooner or later, you will probably tire of continually copying program output from the display by hand. The solution, of course, is to direct program output to a printer. The procedure for doing this varies from one Apple to the next. You can cause output to appear only on the printer by entering PR \# I where I is the port your printer card is in just before you run a program.

\section*{Changing the Precision of Rounded Values}

Many of the programs employ user-defined functions to round numeric values to a certain number of decimal places. For example, the Net Present Value program has a function on line 20 which does this:
\[
20 \operatorname{DEF} \operatorname{FNA}(\mathrm{X})=\operatorname{INT}(\mathrm{X} \cdot 100+0.5) / 100
\]

This function rounds to the nearest hundredth, thus calculating the net present value to the nearest cent. The value 100 which appears twice in the function definition statement shown above determines how many decimal digits there will be (two in this case). To change the number of decimal digits, change both occurrences of the value 100 , or whatever value is specified in the program you are considering. For example, the following replacement for line 20 will calculate net present value to the nearest whole dollar:
\[
20 \operatorname{DEF} \operatorname{FNA}(\mathrm{X})=\operatorname{INT}(\mathrm{X} \cdot 1+0.5) / 1
\]

Or more simply stated:
\[
20 \operatorname{DEFFNA}(X)=\operatorname{INT}(X+0.5)
\]

\section*{Frequency of Compounding Interest}

Several of these programs base their computations on interest compounded annually. This is acceptable in most cases. But you can have the calculations compound interest more frequently. Perhaps the easiest way to do this is to convert the annual interest rate to the effective interest rate, based on the number of compounding periods per year. Then enter this effective rate when the program asks for an interest rate. The general formula for this is
\[
E=\left(1+\frac{1}{N}\right)^{N Y}
\]
where \(E\) is the effective interest rate, \(I\) is the annual interest rate expessed as a decimal fraction, \(N\) is the number of compounding periods per year, and \(Y\) is the number of years. The formula for continuous compounding is:
\[
\mathrm{E}=e^{\mathrm{IY}}
\]
where E is the effective interest rate, \(e\) is \(2.718281828 \ldots\) (the base of natural logarithms), I is the nominal interest rate, and Y is the number of years.

Of course, you can change a program to accept the nominal interest rate and convert it automatically to the effective interest rate. The program would have to ask for the number of compounding periods per year in order to make the conversion. Alternatively, you could restate the interest compounding calculation in the program so that it compounds at the desired frequency. For example, this calculation occurs in the Future Value of an Investment program on line 240. If you restate line 240 as shown below, the program will compute the future value of an investment at growth rate R , compounded continuously.
\[
240 \mathrm{~T}=\mathrm{T}+\mathrm{FNA}(\mathrm{C}(\mathrm{~J}) \cdot \operatorname{EXP}(\mathrm{R} \cdot \mathrm{~N}-\mathrm{J})))
\]

\section*{Other OSBORNE/McGraw-Hill Publications}

\author{
An Introduction to Microcomputers: Volume 0 - The Beginner's Book \\ An Introduction to Microcomputers: Volume 1 - Basic Concepts, 2nd Edition \\ An Introduction to Microcomputers: Volume 3 - Some Real Support Devices \\ Osborne 4 \& 8-Bit Microprocessor Handbook \\ Osborne 16-Bit Microprocessor Handbook \\ 8089 I/O Processor Handbook \\ CRT Controller Handbook \\ 68000 Microprocessor Handbook \\ 8080A/8085 Assembly Language Programming \\ 6800 Assembly Language Programming \\ Z80 Assembly Language Programming \\ 6502 Assembly Language Programming \\ Z8000 Assembly Language Programming \\ 6809 Assembly Language Programming \\ Running Wild - The Next Industrial Revolution \\ The 8086 Book \\ PET and the IEEE 488 Bus (GPIB) \\ PET/CBM Personal Computer Guide, 2nd Edition \\ Business System Buyer's Guide \\ Osborne CP/M \({ }^{\circledR}\) User Guide \\ Apple II \({ }^{\circledR}\) User’s Guide \\ Microprocessors for Measurement and Control \\ WordStar™ Made Easy \\ Some Common BASIC Programs \\ Some Common BASIC Programs - PET/CBM Edition \\ Some Common BASIC Programs - Atari \({ }^{\circledR}\) Edition \\ Some Common BASIC Programs - TRS-80 \({ }^{\text {TM }}\) Level II Edition \\ Some Common BASIC Programs - Apple II® Edition \\ Practical BASIC Programs \\ Practical BASIC Programs - TRS-80 \({ }^{\mathrm{TM}}\) Level II Edition \\ Practical BASIC Programs - Apple II \({ }^{\circledR}\) Edition \\ Payroll with Cost Accounting \\ Accounts Payable and Accounts Receivable \\ General Ledger \\ 8080 Programming for Logic Design \\ 6800 Programming for Logic Design \\ Z80 Programming for Logic Design \\ CBASICтм User Guide \\ Science \& Engineering Programs - Apple II \({ }^{\circledR}\) Edition \\ Interfacing to S-100/IEEE 696 Microcomputers
}

\title{
Practical BASIC Programs Apple II Edition
}

Income averaging, financial rate of return, net present value, statistical estimation theory, temperature conversion, home budgeting, and even checkbook reconciliation represent but a few of the 40 practical programs offered in Practical BASIC Programs Apple \(I{ }^{\circledR}\) Edition. This collection of programs can help solve the most difficult problems in the office, classroom, and home.

The programs can be keyed directly into your Apple \(\|^{\circledR}\) computer as they are listed here. Sample runs, practical problems, and BASIC source listings make this an essential reference source for any Apple \(\|^{\circledast}\) user. Each program includes an easy-to-understand discussion of subject matter, required inputs, and program results. Program notes offer adaptations to fit your individual needs.

Other OSBORNE/McGraw-Hill books of interest:
Some Common BASIC Programs: Apple II \({ }^{\circledR}\) Edition
Science and Engineering Programs: Apple \(\|^{\oplus}\) Edition
Apple II® User's Guide
6502 Assembly Language Subroutines
6502 Assembly Language Programming
\({ }^{\circledR}\) Apple II is a registered trademark of Apple Computer, Inc.```


[^0]:    Copyright ${ }^{\ominus} 1981$ McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

[^1]:    Caution: Use Tax Rate Schedule X, Y or Z from the Form 1040 instructions to figure your tax on lines 20, 21, 22, 25 and 26 . Do not use the tax tables.

